МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный аграрный университет»

УТВЕРЖДАЮ Проректор по учебной работе Г.П. Малявко «20» мая 2020 г.

Высшая математика

(Наименование дисциплины)

рабочая программа дисциплины

Закреплена за кафедрой

Математики, физики и информатики

Направление подготовки

21.03.02 Землеустройство и кадастры

Профиль

Геодезическое обеспечение землеустройства и кадастров

Квалификация

Бакалавр

Форма обучения

заочная

Общая трудоемкость

8 з.е.

Часов по учебному плану

288

Программу соста	вил(и):	
Ф.И.О.	к. т. н., доцент Ракул Е. А.	
\$		
Рецензент(ы):		•

к. ф. – м. н., доцент Рыжик В. Н.

Рабочая программа дисциплины «Высшая математика» разработана в соответствии с Φ F Θ C В Θ 0 по направлению подготовки 21. 03. 02 Землеустройство и кадастры (уровень бакалавриата), утверждённого приказом Министерства образования и науки Р Φ от 1 октября 2015 г. №1084.

составлена на основании учебного плана: 2020 года набора

Направление 21. 03. 02 Землеустройство и кадастры

Ф.И.О.

Профиль Геодезическое обеспечение землеустройства и кадастров утвержденного учёным советом вуза от «20» мая 2020 г. протокол № 10

Рабочая программа одобрена на заседании кафедры Природообустройства и водопользования

Протокол от «20» мая 2020 г. протокол № 10

Зав. кафедрой, к. т. н., доцент Байдакова Е.В.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1.1 Формирование знаний о математике, как особом образе мышления
- 1.2 Приобретение опыта построения математических моделей и проведение необходимых расчетов в рамках построенных моделей
- 1.3 Употребление математической символики для выражения количественных и качественных отношений объектов
- 1.4 Применение математического аппарата для решения прикладных задач в рамках профессиональной деятельности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Блок ОПОП BO: **Б1.Б.12**

2.1 Требования к предварительной подготовке обучающегося:

Для освоения дисциплины обучающиеся используют знания, умения, навыки, способы деятельности и установки, сформированные в ходе изучения математики в курсе среднего (полного) общего и среднего профессионального образования.

2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Метрология, стандартизация и сертификация

Геодезия

Картография

Методы и модели

Материаловедение

Землеустроительное проектирование

Прикладная геодезия

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТВЕТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Достижения планируемых результатов обучения, соответственных с общими целями и задачами ОПОП, является целью освоения дисциплины

ОК-7 Способность к самоорганизации и самообразованию.

Знать: основные математические понятия и факты, применяемые в профессиональной деятельности; разделы и методы теоретической и прикладной математики, составляющие общенаучную теоретическую основу общеинженерных, естественнонаучных и профессиональных учебных дисциплин, и способствующие самоорганизации и самообразованию.

Уметь: применять математические методы при решении основных задач профессиональной направленности; проводить работу по самоорганизации и самообразованию в рамках дисциплины

Владеть: основными методами решения математических задач; основными методами исследования в области математических наук, практическими умениями и навыками их

использования; методами построения математической модели задач профессиональной направленности и содержательной интерпретации полученных результатов

Этапы формирования компетенции в процессе освоения образовательной программы: в соответствии с учебным планом и планируемыми результатами освоения ОПОП.

4. РАСПРЕДЕЛЕНИЕ ЧАСОВ ДИСЦИПЛИНЫ ПО СЕМЕСТРАМ

Вид занятий				1				2				3	3			4	4				5		Ит	ого
		новоч-	3И.	К ВНИЯ	ле	RR HT	3И	ккнм	ле	RRHT	3ИІ	ккни	ле	пкит	ЗИМ	ккни	лет	RRНП	3ИІ	ккни	ле	ккнт		
	УП	РПД	УП	РПД	УП	РПД																	УП	РПД
Лекции	2	2	2	2	4	4																	8	8
Лабораторные																								
Практические	2	2	6	6	4	4																	12	12
КСР																								
Консультация перед экзаменом			1	1	1	1																	2	2
Прием экзамена			0,25	0,25	0,25	0,25																	0,50	0,50
Контактная работа обучающихся с преподавателем (аудиторная)	4	4	9,15	9,15	9,25	9,25																	22,5	22,5
Сам. работа	32	32	128	128	92	92																	252	252
Контроль			6,75	6,75	6,75	6,75																	13,5	13,5
Итого	36	36	144	144	108	108																	288	288

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занятия	Наименование разделов и тем /вид занятия/	Курс	Часов	Компетенции
1	2	3	4	5
	Раздел 1. Линейная и векторная алгебра			
1.1	Матрицы: основные понятия. Действия над матрицами. Примеры. Определители второго и третьего порядков. Свойства определителей. Методы вычисления определителей. Системы линейных уравнений. Метод Крамера (Лекция)	1	2	OK-7
1.2	Векторы: основные понятия. Координаты вектора. Длина вектора. Проекция вектора на ось. Разложение вектора по базису. Скалярное произведение векторов, его свойства и вычисление. Векторное произведение векторов, его свойства и вычисление. Смешанное произведение векторов (Лекция)	1		ОК-7
1.3	Матрицы. Действия с матрицами. Определители 2 и 3 порядков, методы вычисления Системы трех линейных уравнений с тремя неизвестными. Метод Крамера (СР.)	1	20	ОК-7
1.4	Векторы. Действия над векторами. Координаты вектора. Разложение вектора по базису. Проекция вектора на вектор. Скалярное произведение векторов. Работа силы. Векторное произведение векторов. Смешанное произведение векторов (Практ.)	1	2	ОК-7
1.5	Решение систем линейных уравнений методом Гаусса, с помощью обратной матрицы (CP)	1	30	ОК-7
	Раздел 2. Аналитическая геометрия на плоскости и в пространстве			

2.1	Метод координат. Полярная система координат. Простейшие задачи аналитической геометрии на плоскости. Прямая на плоскости. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Расстояние от точки до прямой (Лекция)	1	2	OK-7
2.2	Уравнение поверхности. Плоскость. Общее уравнение плоскости и его частные виды. Угол между плоскостями. Расстояние от точки до плоскости. Прямая в пространстве. Канонические и параметрические уравнения прямой в пространстве. Взаимное расположение прямой и плоскости (СР)	1	20	OK-7
2.3	Метод координат на плоскости. Полярная система координат. Расстояние между двумя точками. Деление отрезка в заданном отношении. Прямая на плоскости. Способы задания прямой. Построение прямой. Вычисление угла между прямыми. Расчет элементов треугольника. Расстояние от точки до прямой. Смешанные задачи на прямую (Практ.)	1		OK-7
2.4	Плоскость. Уравнения плоскости. Угол между плоскостями. Расстояние от точки до плоскости. Прямая в пространстве. Канонические и параметрические уравнения прямой. След прямой на плоскости. Взаимное расположение прямой и плоскости. (Практ.)	1	2	ОК-7
2.5	Линии второго порядка. Окружность, эллипс, гипербола, парабола. Нахождение характеристик и построение линий второго порядка (CP)	1	20	OK-7
	Раздел 3. Функция. Предел функции			
3.1	Понятие функции. Область определения. Способы задания функции. Сложные функции. Предел функции, его свойства. Односторонние пределы. Замечательные пределы. Понятие непрерывности функции. Теоремы о непрерывных функциях. (Лекция)	1	2	ОК-7

3.2	Функция. Построение графиков функций. Нахождение области определения функции. Сложные функции. Обратные функции. Вычисление предела функции. Неопределенности $0/0$ и ∞/∞ . Замечательные пределы. Исследование функций на непрерывность (Практ.)	1	2	OK-7
3.3	Бесконечно малые и бесконечно большие функции. Сравнение бесконечно малых. (CP)	1	20	OK-7
3.4	Непрерывность некоторых элементарных функций. Классификация точек разрыва функции. Асимптоты графика функции (CP)	1	20	ОК-7
	Раздел 4. Дифференцирование функции одной переменной			
4.1	Понятие производной. Геометрический и физический смысл производной. Уравнение касательной и нормали к графику функции. Понятие дифференциала. Правила дифференцирования. Таблица производных основных элементарных функций. Дифференцирование сложной функции. (Лекция.)	1	2	ОК-7
4.2	Производная функции. Производная сложной функции. Геометрические и механические приложения производной. Дифференциал функции. Полное исследование функции и построение ее графика (Практ.)	1	2	OK-7
4.3	Производные и дифференциалы высших порядков. Основные теоремы дифференциального исчисления. Правило Лопиталя, раскрытие неопределенностей $0/0$ и ∞/∞ (CP)	1	10	OK-7
4.4	Критерий монотонности функции. Экстремумы функции. Необходимое и достаточное условия экстремума функции. Направление выпуклости графика функции. Точки перегиба (СР)	1	10	OK-7
	Раздел 5. Интегральное исчисление функции одной переменной	1		

5.1	Понятие первообразной. Неопределенный интеграл, его свойства. Таблица основных интегралов. Непосредственное интегрирование. Метод замены переменной в неопределенном интеграле. Метод интегрирования по частям. Интегрирование рациональных дробей. Интегрирование некоторых иррациональных функций. (Практ.)	1	2	ОК-7
5.2	Вычисление интегралов. Непосредственное интегрирование. Метод замены переменной. Метод интегрирования по частям. Интегрирование рациональных дробей. Интегрирование некоторых иррациональных функций. (СР)	1	14	ОК-7
	Раздел 6. Определенный интеграл	1		
6.1	Понятие определенного интеграла. Формула Ньютона-Лейбница. Основные свойства определенного интеграла. Метод замены переменной в определенном интеграле. Формула интегрирования по частям. Несобственные интегралы 1 и 2 рода. Некоторые геометрические и физические приложения определенных интегралов (СР)	1	10	ОК-7
	Раздел 7. Дифференциальные уравнения	1		
7.1	Общее и частное решения дифференциального уравнения. Задача Коши и ее решение. Дифференциальные уравнения 1 порядка. Дифференциальные уравнения 2 порядка (СР)	1	10	ОК-7
7.2	Дифференциальные уравнения 2 порядка, допускающие понижения порядка. Комплексные числа. Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами (CP)	1	10	ОК-7
7.3	Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. Метод неопределенных коэффициентов. Системы дифференциальных уравнений (СР)	1	10	ОК-7
	Раздел 8. Функции нескольких переменных	1		

8.1	Понятие функции нескольких переменных. Область определения, график, простейшие свойства. Предел и непрерывность функции нескольких переменных. Частные производные функции нескольких переменных. Производные сложных функций. Полный дифференциал функции. Экстремумы функции двух переменных. (СР)	1	10	OK-7
8.2	Двойной интеграл: понятие, свойства. Сведение двойного интеграла к повторному. Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах. Некоторые геометрические и физические приложения двойного интеграла (СР)	1	10	ОК-7
8.3	Тройной интеграл: понятие, свойства. Сведение тройного интеграла к повторному. Замена переменных в тройном интеграле. Тройной интеграл в цилиндрических и сферических координатах. Некоторые геометрические и физические приложения тройного интеграла (СР)	1	10	OK-7
8.4	Криволинейный интеграл 1 рода (по длине дуги): понятие, свойства, основные методы вычисления. Некоторые геометрические и физические приложения криволинейного интеграла (СР)	1	10	OK-7
8.5	Криволинейный интеграл 2 рода (по координатам): понятие, свойства. Связь между криволинейными интегралами 1 и 2 рода. Формула Грина. Поверхностные интегралы 1 и 2 рода: понятие, свойства, основные методы вычисления (СР)	1	10	ОК-7
8.6	Контроль /К/	1	6,75	ОК-7
8.7	Консультация перед экзаменом /К/	1	1	OK-7
8.8	Контактная работа при приеме экзамена/К/	1	0,25	ОК-7

Реализация программы предполагает использование традиционной, активной и интерактивной форм обучения на лекционных и практических занятиях

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Приложение 1

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

№	Авторы, составители	Заглавие	Издательство	Количес тво
		6.1.1 Основная лите	ратура	
Л1.1	Н.И. Лобкова, Ю.Д. Максимов, Ю.А. Хватов.	Высшая математика. Том 1. Учебное пособие https://www.book.ru/book/916 095	Москва: Проспект, 2014. — 580 с. — ISBN 978-5-39212-162-5.	ЭБС
Л1.2	Н.И. Лобкова, Ю.Д. Максимов, Ю.А. Хватов.	Высшая математика. Том 2. Учебное пособие https://www.book.ru/book/916 096	Москва: Проспект, 2014. — 472 с. — ISBN 978-5-39213-489-2.	ЭБС
Л1.3	Е.А. Полькина, Н.С. Стакун	Сборник заданий по высшей математике с образцами решений (математический анализ). Учебнометодическое пособие https://www.book.ru/book/922576	Москва: Прометей, 2013. — 200 с. — ISBN 978-5-7042-2490-7.	ЭБС
Л1.4	Б.П. Демидович	Сборник задач и упражнений по математическому анализу: учебное пособие https://www.book.ru/book/921599	Москва: Транспортная компания, 2016. — 624 с. — ISBN 978-5-4365-0682-1.	ЭБС
Л1.5	Г.Н. Берман.	Сборник задач по курсу математического анализа: задачник https://www.book.ru/book/918 448	Москва: Эколит, 2015. — 432 с. — ISBN 978-5-4365-0169-7.	ЭБС

Л1.6	В. СШипачев	Высшая математика. Полный курс в 2 т. Том 1 : учебник для академического бакалавриата / В. С. Шипачев ; под ред. А. Н. Тихонова. — 4-е изд., испр. и доп. https://www.biblio-online.ru/book/5C6A1B33-37B5-4703-B24D-EA7819D4F348	М.: Издательство Юрайт, 2018. — 288 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-534-02101-1	ЭБС
Л1.7	В. С. Шипачев	Высшая математика. Полный курс в 2 т. Том 2 : учебник для академического бакалавриата / В. С. Шипачев ; под ред. А. Н. Тихонова. — 4-е изд., испр. и доп. https://www.biblio-online.ru/book/BD66DC6D-9A8C-4FFC-9372-18DBC8D653EF	М.: Издательство Юрайт, 2018. — 341 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-534-02103-5	ЭБС
		6.1.2 Дополнительная л		T
	Авторы, составители	Заглавие	Издательство	Количес тво
Л2.1	Натансон И. П.	Краткий курс высшей математики	СПб.: Лань, 2005	20
Л2.2	Привалов И. И.	Аналитическая геометрия	СПб.: Лань, 2005	50
Л2.3	Клетеник Д.В.	Сборник задач по аналитической геометрии	СПб.: Профессия, 2006	29
Л2.4	Шипачев В.С.	Высшая математика	М.: Высшая школа, 2007	33
Л2.5	Пискунов Н.С.	Дифференциальные и интегральные исчисления	М.: Интеграл-Пресс, 2002	50
Л2.6	Минорский В.П.	Сборник задач по высшей математике	М.: Физматлит, 2003	353
Л2.7	В.Ф. Комогорцев	Математический анализ: учебное пособие http://www.bgsha.com/ru/book/431264/	Брянск :БГСХА, 2014 201 c.	ЭБС Брянский ГАУ
	,	6.1.3 Методические у	казания	
	Авторы, составители	Заглавие	Издательство, год издания	Количес тво

Л3.1	В.Н. Рыжик	Производная функции и ее приложение к решению задач: Методическое пособие http://www.bgsha.com/ru/book /112874/	Брянск: Издательство Брянского ГАУ, 2015 52 с.	ЭБС Брянский ГАУ
Л3.2	Панкова Е.А.	Определенны й интеграл и его приложения к геометрическим и физическим задачам http://www.bgsha.com/ru/book/374771/	Брянск: Издательство Брянского ГАУ, 2017 36 с.	ЭБС Брянский ГАУ
Л3.3	Ракул Е.А.	Методические рекомендации для самостоятельной работы студентов по дисциплине «Высшая математика». Методическое пособие для бакалавров направлений подготовки 13.03.02 «Электроэнергетика и электротехника», 15.03.04 «Автоматизация технологических процессов и производств», 20.03.02 «Природообустройство и водопользование», 21.03.02 «Землеустройство и кадастры» http://www.bgsha.com/ru/book/440664/	Брянск: Изд-во Брянский ГАУ, 2018. – 38 с.	ЭБС Брянский ГАУ

6.1.4. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

- 1. Национальный цифровой ресурс РУКОНТ http://rucont.ru/
- 2. Многофункциональная система ИНФОРМИО http://www.informio.ru//
- 3. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru/
- 4. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/
- 5. Электронно-библиотечная система ЛАНЬ http://e.lanbook.com/
- 6. Электронно-библиотечная система http://www.book.ru/
- 7. Электронно-библиотечная система HOPAHT https://biblio-online.ru/
- 8. Единое окно доступа к образовательным ресурсам http://window.edu.ru/catalog/
- 9. Электронно-библиотечная система http://www.iqlib.ru/
- 10. Образовательный математический сайт www.exponenta.ru/

6.2. Перечень профессиональных баз данных и информационных справочных систем

Компьютерная информационно-правовая система «КонсультантПлюс»

Профессиональная справочная система «Техэксперт»

Официальный интернет-портал базы данных правовой информации http://pravo.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru/

Портал "Информационно-коммуникационные технологии в образовании" http://www.ict.edu.ru/

Web of Science Core Collection политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных http://www.webofscience.com

Полнотекстовый архив «Национальный Электронно-Информационный Консорциум» (НЭИКОН) https://neicon.ru/

Базы данных издательства Springer https://link.springer.com/

6.3. Перечень программного обеспечения

Операционная система Microsoft Windows 7 Professional Russian Операционная система Microsoft Windows 10 Professional Russian Офисное программное обеспечение Microsoft Office 2010 Standart Офисное программное обеспечение Microsoft Office 2016 Standart

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Специально оборудованные помещения:

Учебная аудитория для проведения занятий лекционного типа — 1-214, укомплектованные учебными и техническими средствами для представления информации.

Аудитории для проведения практических занятий 1-325, 1-326, укомплектованные учебными и техническими средствами для представления информации, 10 компьютерами с выходом в локальную сеть и Интернет, доступом к справочно-правовой системе Консультант, электронным учебно-методическим материалам; к электронной информационно-образовательной среде.

Помещение для самостоятельной работы (читальный зал научной библиотеки) - 15 компьютеров с выходом в локальную сеть и Интернет, доступом к справочно-правовой системе Консультант, электронным учебно-методическим материалам, библиотечному электронному каталогу, ЭБС, к электронной информационно-образовательной среде.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«ВЫСШАЯ МАТЕМАТИКА»

Направление подготовки: 21.03.02 Землеустройство и кадастры

Профиль Геодезическое обеспечение землеустройства и кадастров

Квалификация (степень) выпускника: бакалавр

Форма обучения: заочная

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

<u>Направление подготовки</u>: 21.03.02 Землеустройство и кадастры Профиль: Геодезическое обеспечение землеустройства и кадастров

Дисциплина: Высшая математика

Форма промежуточной аттестации: экзамен

2. ПЕРЕЧЕНЬ ФОРМИРУЕМЫХ КОМПЕТЕНЦИЙ И ЭТАПЫ ИХ ФОРМИРОВАНИЯ

2.1. Компетенции, закреплённые за дисциплиной ОПОП ВО

Изучение дисциплины «Высшая математика» направлено на формировании следующих компетенций:

общекультурные компетенции (ОК):

ОК-7 Способность к самоорганизации и самообразованию.

2.2. Процесс формирования компетенций по дисциплине «Высшая математика»

№ раздела	Наименование раздела	3	У	Н
		1	1	1
1	Линейная и векторная алгебра	+	+	+
2	Аналитическая геометрия на плоскости и в пространстве	+	+	+
3	Функция. Предел функции	+	+	+
4	Дифференциальное исчисление функции одной переменной	+	+	+
5	Неопределенный интеграл	+	+	+
6	Определенный интеграл	+	+	+
7	Дифференциальные уравнения	+	+	+
8	Функция нескольких переменных	+	+	+

Сокращение: 3 - знание; У - умение; Н - навыки.

2.3. Структура компетенций по дисциплине «Высшая математика»

Знать (3.1))	Уметь (У	V .1)	Владеть	(H.1)
основные математические понятия и факты, применяемые в профессиональн ой деятельности; разделы и методы теоретической и прикладной математики, составляющие общенаучную теоретическую основу общеинженерны х, естественнонауч ных и профессиональн ых учебных дисциплин, и способствующие самоорганизаци и и самообразовани ю.	Лекци и раздел ов № 1-8	применять математические методы при решении основных задач профессионально й направленности; проводить работу по самоорганизации и самообразованию в рамках дисциплины	Практически е работы разделов № 1-8	основными методами решения математических задач; основными методами исследования в области математических наук, практическими умениями и навыками их использования; методами построения математической модели задач профессиональ ной направленности и содержательной интерпретации полученных результатов	Практичес ие работы разделов № 1-8

3. ПОКАЗАТЕЛИ, КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ И ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

3.1. Оценочные средства для проведения промежуточной аттестации дисциплины

Карта оценочных средств промежуточной аттестации дисциплины, проводимой в

форме экзамена					
No		Контролируемые	Контролируемые	Оценочное	
п/п	Раздел дисциплины	дидактические единицы	контролируемые компетенции	средство	
11/11		(темы, вопросы)	компотенции	(№ вопроса)	
1	Линейная и векторная	Матрицы. Действия над	ОК-7	Вопрос	
	алгебра	матрицами. Определители		1-8, 19-21	
		второго и третьего		Задачи	
		порядков. Системы		1-11	
		линейных уравнений.		(1 семестр)	
		Метод Крамера. Понятие			
		обратной матрицы.			
		Решение систем линейных			
		уравнений с помощью			
		обратной матрицы. Метод			
		Гаусса. Векторы.			
		Линейные операции над			
		векторами. Координаты			
		вектора. Длина вектора.			
		Проекция вектора на ось,			
		ее свойства. Разложение			
		вектора по базису.			
		Действие с векторами в			
		координатной форме.			
		Скалярное произведение			
		векторов, его свойства и			
		вычисление. Векторное			
		произведение векторов,			
		его свойства и			
		вычисление. Смешанное			
		произведение векторов.			
		Геометрические и			
		физические приложения			
		векторного и смешанного			
2	Лизпитипеская гесметрия	произведений. Метод координат.	ОК-7	Роппос	
	Аналитическая геометрия на плоскости и в	Полярная система	OIX-/	Вопрос 9-18	
	пространстве	координат. Простейшие		9-10 Задачи	
	пространстве	задачи аналитической		Задачи 12-35	
		геометрии на плоскости.		(1 семестр)	
		Понятие об уравнении		(I comecip)	
		линии. Способы задания			
		линии. Прямая на			
		плоскости. Уравнения			
		прямой. Расстояние от			
		точки до прямой. Линии			
		второго порядка.			
<u> </u>	<u> </u>	- L L		<u> </u>	

		Окружность. Эллипс. Гипербола. Парабола. Плоскость. Уравнения плоскости. Угол между плоскостями. Расстояние от точки до плоскости. Прямая в пространстве. Канонические и параметрические уравнения прямой в		
3	Функции Предел функции	пространстве. Понятие функции. Способы задания функции. Виды функций. Понятие последовательности. Предел последовательности. Основные правила вычисления предела последовательности. Предел функции. Односторонние пределы. Бесконечно большие и бесконечно малые функции. Эквивалентные бесконечно малые функции. Основные теоремы о пределах. Признаки существования предела. Замечательные пределы. Понятие непрерывности функции. Классификация точек разрыва. Асимптоты	OK-7	Вопрос 22-30 Задачи 36-45 (1 семестр)
4	Дифференциальное исчисление функции одной переменной	графика функции Понятие производной. Геометрический и механический смысл производной. Дифференцируемость функции. Понятие дифференциала функции. Геометрический смысл дифференциала. Приближенные	ОК-7	Вопрос 31-40 Задачи 46-63 (1 семестр)

U		интеграл. Геометрический смысл		1-9 Задачи
U	i			
6	Определенный интеграл	Определенный	ОК-7	Вопрос
	O-mara	подстановки.	OIC 7	D
		Тригонометрические		
		функций.		
		иррациональных		
		Интегрирование		
		функций.		
		рациональных		
		Интегрирование		
		частям.		
		подстановки, метод интегрирования по		
		интегрирование, метод		
		непосредственное		
		интегрирования:		
		Основные методы		
		основных интегралов.		
		интеграла. Таблица		
		неопределенного		(1 семестр)
		интеграл. Свойства		64-71
		Неопределенный		Задачи
	интеграл	функции.		41-45
5	Неопределенный	Понятие первообразной	ОК-7	Вопрос
		функции.		
		построение графика		
		исследование и		
		функции. Точки перегиба. Полное		
		выпуклости графика		
		Направление		
		экстремума.		
		и достаточное условия		
		функции. Необходимое		
		функции. Экстремумы		
		Критерий монотонности		
		исчисления.		
		дифференциального		
		Основные теоремы		
		Правило Лопиталя.		
		высших порядков.		
		и дифференциалы		
		функции. Производные		
		Производная сложной		
		элементарных функций.		
		Производные основных		
		правила дифференцирования.		
		дифференциала. Правила		
1	i	вычисления с помощью		

		интеграла. Свойства		(2 семестр)
		определенного		(2 ccmccrp)
		интеграла. Формула		
		Ньютона-Лейбница.		
		Замена переменной в		
		-		
		определенном		
		интеграле.		
		Интегрирование по		
		частям.		
		Вычисление площади		
		криволинейных фигур.		
		Длина дуги кривой.		
		Объем тела вращения.		
		Центр тяжести плоской		
		фигуры. Моменты		
		инерции.		
		Несобственные		
		интегралы 1 и 2 рода.		
		Приближенное		
		вычисление		
		определенных		
		интегралов: формула		
		трапеций, формула		
	77.1.1	Симпсона.	0.74.5	
7	Дифференциальные	Дифференциальные	ОК-7	Вопрос
	уравнения	уравнения: основные		10-16
		понятия. Начальные		Задачи
		условия, задачи Коши.		27-34
		Дифференциальные		(2 семестр)
		уравнения 1 порядка: с		
		разделяющимися		
		переменными,		
		однородные.		
		Линейные		
		дифференциальные		
		уравнения 1 порядка.		
		Уравнения Бернулли.		
		Комплексные числа.		
		Дифференциальные		
		уравнения 2 порядка,		
		допускающие		
		понижения порядка.		
		Дифференциальные		
		уравнения 2 порядка.		
		Задача Коши. Линейные		
		однородные		
		дифференциальные		
		уравнения 2 порядка с		
		постоянными		
1		коэффициентами.		
		- ··		
		Линейные неоднородные		

		1 11		1
		дифференциальные		
		уравнения 2 порядка с		
		постоянными		
		коэффициентами.		
8	Функции нескольких	Функции многих	ОК-7	Вопрос
	переменных	переменных. Функции		17-35
		двух переменных:		Задачи
		понятие, область		35-89
		определения, график.		(2 семестр)
		Полный дифференциал		
		Частные производные		
		первого, второго		
		порядков.		
		Экстремум функции		
		двух переменных.		
		Двойной интеграл.		
		Тройной интеграл и его		
		вычисление.		
		Криволинейные		
		интегралы 1 рода (по		
		длине дуги).		
		Криволинейные		
		интегралы 2 рода (по		
		координатам).		
		Поверхностные		
		интегралы 1 и 2 рода.		
		Производная по		
		направлению. Градиент.		
		Поток векторного поля.		
		Дивергенция. Ротор		

Перечень вопросов к экзамену по дисциплине «Высшая математика»

- 1. Прямоугольные координаты точки на плоскости. Простейшие задачи аналитической геометрии на плоскости: расстояние между двумя точками, деление отрезка в данном отношении. Полярные координаты точки.
- 2. Скалярные и векторные величины. Понятие вектора. Длина вектора. Коллинеарные и компланарные векторы. Равные векторы. Противоположные векторы. Примеры.
- 3. Операции над векторами: сложение, вычитание, умножение вектора на число. Примеры. Направляющие косинусы вектора.
- 4. Проекция вектора на ось. Свойства проекции вектора на ось.
- 5. Базис на плоскости и в пространстве. Теорема о разложении вектора по базису.
- 6. Координаты вектора. Нахождение координат вектора по координатам его концов. Вычисление длины вектора по его координатам. Примеры.
- 7. Скалярное произведение векторов. Свойства скалярного произведения. Выражение скалярного произведения через координаты векторов. Угол между векторами. Условие перпендикулярности векторов.
- 8. Векторное произведение векторов. Смешанное произведение векторов.

- 9. Уравнение линии. Примеры. Основные задачи аналитической геометрии на плоскости.
- 10. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых.
- 11. Общее уравнение прямой.
- 12. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом. Уравнение прямой, проходящей через две данные точки. Уравнение прямой «в отрезках» на осях. Уравнение прямой, проходящей через точку перпендикулярно данному вектору. Расстояние от точки до прямой.
- 13. Понятие о порядке линии. Примеры. Окружность.
- 14. Эллипс: определение, уравнение, основные параметры. Гипербола: определение, уравнение, основные параметры.
- 15. Директрисы эллипса и гиперболы. Парабола: определение, уравнение, основные параметры.
- 16. Понятие об уравнении поверхности. Уравнения плоскости. Случаи расположения плоскости относительно координатных осей.
- 17. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей. Расстояние от точки до плоскости.
- 18. Канонические и параметрические уравнения прямой в пространстве. Примеры. Прямая как линия пересечения двух плоскостей. Условия параллельности и перпендикулярности прямых в пространстве. Угол между прямыми в пространстве.
- 19. Понятие матрицы. Примеры. Виды матриц. Действия над матрицами.
- 20. Определители второго и третьего порядка. Примеры. Миноры. Алгебраические дополнения. Вычисление определителя. Свойства определителей.
- 21. Система трех линейных уравнений с тремя неизвестными. Формулы Крамера. Метод Гаусса.
- 22. Величины постоянные и переменные. Примеры. Понятие функции. Способы задания функции. Четные и нечетные функции. Монотонные функции. Сложная функция. Обратная функция. Примеры.
- 23. Понятие последовательности. Предел последовательности. Основные правила вычисления предела последовательности.
- 24. Предел функции. Односторонние пределы. Примеры.
- 25. Бесконечно большие и бесконечно малые функции, их свойства. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых.
- 26. Основные теоремы о пределах. Признаки существования предела.
- 27. Замечательные пределы. Следствия из замечательных пределов.
- 28. Понятие непрерывности функции. Примеры. Арифметические действия с непрерывными функциями. Непрерывность некоторых элементарных функций.
- 29. Точки разрыва графика функции. Классификация точек разрыва.
- 30. Асимптоты графика функции: вертикальные, горизонтальные, наклонные.
- 31. Понятие производной. Геометрический и механический смысл производной. Уравнение касательной и нормали к графику функции.
- 32. Дифференцируемость функции. Связь между понятиями непрерывности и дифференцируемости. Понятие дифференциала функции. Геометрический смысл дифференциала. Приближенные вычисления с помощью дифференциала.
- 33. Правила дифференцирования. Производные основных элементарных функций.
- 34. Производная сложной функции. Производная функции, заданной параметрическими уравнениями. Производная показательно степенной функции.
- 35. Производные и дифференциалы высших порядков. Примеры.
- 36. Правило Лопиталя. Примеры.
- 37. Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа).

- 38. Критерий монотонности функции. Экстремумы функции. Необходимое и достаточное условия экстремума.
- 39. Направление выпуклости графика функции. Точки перегиба.
- 40. Полное исследование и построение графика функции.
- 41. Понятие первообразной функции. Примеры.
- 42. Неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов.
- 43. Основные методы интегрирования: непосредственное интегрирование, метод подстановки, метод интегрирования по частям.
- 44. Интегрирование рациональных функций.
- 45. Интегрирование иррациональных функций. Тригонометрические подстановки.

- 1. Определенный интеграл. Геометрический смысл определенного интеграла.
- 2. Свойства определенного интеграла.
- 3. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям.
- 4. Вычисление площади криволинейных фигур.
- 5. Длина дуги кривой.
- 6. Объем тела вращения.
- 7. Центр тяжести плоской фигуры. Моменты инерции.
- 8. Несобственные интегралы 1 и 2 рода.
- 9. Приближенное вычисление определенных интегралов: формула трапеций, формула Симпсона.
- 10. Дифференциальные уравнения: основные понятия. Начальные условия, задачи Коши.
- 11. Дифференциальные уравнения 1 порядка: с разделяющимися переменными, однородные.
- 12. Линейные дифференциальные уравнения 1 порядка. Уравнения Бернулли.
- 13. Комплексные числа, их изображение. Действия с комплексными числами. Тригонометрическая форма комплексного числа. Формула Эйлера.
- 14. Дифференциальные уравнения 2 порядка, допускающие понижения порядка.
- 15. Дифференциальные уравнения 2 порядка. Задача Коши. Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. Характеристическое уравнение. Структура общего решения.
- 16. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. Метод неопределенных коэффициентов.
- 17. Функции многих переменных. Функции двух переменных: понятие, область определения, график.
- 18. Полный дифференциал функции двух переменных.
- 19. Частные производные первого, второго порядков.
- 20. Экстремум функции двух переменных.
- 21. Наибольшее и наименьшее значения функции двух переменных в замкнутой области.
- 22. Двойной интеграл. Геометрический и физический смысл двойного интеграла.
- 23. Методы вычисления двойного интеграла.
- 24. Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах.
- 25. Некоторые геометрические и физические приложения двойного интеграла.
- 26. Тройной интеграл и его вычисление. Геометрический смысл.
- 27. Замена переменных в тройном интеграле.
- 28. Вычисление тройного интеграла в цилиндрических и сферических координатах.
- 29. Некоторые геометрические и физические приложения тройного интеграла.

- 30. Криволинейные интегралы 1 рода (по длине дуги). Методы вычисления криволинейных интегралов 1 рода.
- 31. Некоторые геометрические и физические приложения криволинейного интеграла 1
- 32. Криволинейные интегралы 2 рода (по координатам). Методы вычисления криволинейных интегралов 2 рода.
- 33. Поверхностные интегралы 1 и 2 рода.
- 34. Производная по направлению. Градиент.
- 35. Поток векторного поля. Дивергенция. Ротор.

Перечень экзаменационных задач по дисциплине «Высшая математика»

1. Решить неравенство
$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} > 0$$
.

$$|5 - 3 - x|$$
2. Решить систему уравнений методом Крамера $\begin{cases} x + 2y - z = 2 \\ 2x - 3y + 2z = 2 \end{cases}$
3. Решить систему уравнений методом Гаусса $\begin{cases} x + 2y - z = 2 \\ 3x + y + z = 8 \end{cases}$
 $\begin{cases} x + 2y - z = 2 \\ 2x - 3y + 2z = 2 \end{cases}$

3. Решить систему уравнений методом Гаусса
$$\begin{cases} x + 2y - z = 2 \\ 2x - 3y + 2z = 2 \\ 3x + y + z = 8 \end{cases}$$

4. Решить систему уравнений с помощью обратной матрицы
$$\begin{cases} x+2y-z=2\\ 2x-3y+2z=2\\ 3x+y+z=8 \end{cases}$$

- 5. Написать разложение вектора \bar{x} (5; -20; -1] по векторам \bar{a} (2; 1], \bar{b} (1; -1], \bar{c} **6**; -3; 2.
- 6. Даны векторы $\overline{a}=3\overline{i}-6\overline{j}+2\overline{k}$, $\overline{b}=-2\overline{i}-\overline{j}+2\overline{k}$. Найти площадь треугольника, построенного на этих векторах.
- 7. Найти значение α , при котором векторы \bar{a} $\mathbf{Q}\alpha+1; 3\alpha+2; \alpha$, \bar{b} $\mathbf{Q}; 3; -1$ и \overline{c} **(**; 2; 4) компланарны.

8. Дано
$$|\overline{a}|=19$$
, $|\overline{b}|=13$, $|\overline{a}-\overline{b}|=22$. Найти $|\overline{a}+\overline{b}|$.

9. Вычислить
$$6p - q 6q + p$$
, если $|p| = \frac{1}{2}, |q| = 4, 6, q = \frac{5\pi}{6}$.

- 10. Найти острый угол между диагоналями параллелограмма, построенного на векторах \bar{a} **Q**; 1; 0, \bar{b} **Q**; -1; 1.
- 11. Найти объем параллелепипеда, построенного на векторах \bar{a} \mathbf{Q} ; 2; 1 \bar{b} , \bar{b} \mathbf{Q} ; 1; -1 \bar{b} ,
- 12. Найти периметр треугольника с вершинами *A* (2; -1), *B* (-1; 3), *C* (2; 7).

- 13. Составить уравнение множества точек, равноудаленных от начала координат и точки $A \not\in 2; -3$.
- 14. Найти прямоугольные координаты точек $A\!\!\left(3; \frac{\pi}{4}\right)$ и $B\!\!\left(2; \frac{5\pi}{6}\right)$.
- 15. Найти полярные координаты точек $A(-4\sqrt{3})$ и B(7).
- 16. Отрезок AB разделен точками C(0; -2) и D(3; 1) на три равные части. Найти координаты концов отрезка.
- 17. Даны точки в полярной системе координат $A\left(3; \frac{\pi}{6}\right)$, $B\left(5; \frac{2\pi}{3}\right)$. Найти расстояние между ними.
- 18. Точка C делит отрезок AB, где $A\mathbf{q};-3$ и $B\mathbf{q};8;6$, в отношении $\lambda=2$. Через точку C провести прямую, составляющую с осью Ox угол 135° .
- 19. Найти длину высоты BD в треугольнике с вершинами $A \in 3; 0$, $B \in 5$, $C \in 2$.
- 20. Составить уравнение прямой, проходящей через точку $A \leftarrow 2;8$ и середину отрезка MN, где $M \leftarrow 2;1$.
- 21. Дан треугольник с вершинами $A \in 3$; $4 \supset B \in 9$; $6 \supset C \in 2$. Составить уравнение средней линии треугольника, параллельной стороне AC.
- 22. Составить уравнение прямой, проходящей через точку $A \leftarrow 1; 4$ и параллельной прямой 2x + 3y + 5 = 0.
- 23. Составить уравнение прямой, которая проходит через точку P (\mathbf{Q} ; 3) и отсекает от координатного угла треугольник, площадью 12 кв. ед.
- 24. Эксцентриситет гиперболы равен $\sqrt{3}$, а фокусы находятся в точках (6,0) и (6,0). Составить каноническое уравнение гиперболы и написать уравнение ее асимптот.
- 25. Через фокус параболы $y^2 = 48x$ проведена прямая, параллельная прямой $y = \sqrt{3}x + 1$. Найти длину образовавшейся хорды.
- 26. Гипербола проходит через точку M **(**; $-2\sqrt{2}$ и имеет мнимую полуось, равную 2. Написать каноническое уравнение гиперболы, определить ее фокусы.
- 27. Через точку M 5; 2 провести прямые, параллельные асимптотам гиперболы $7x^2 5y^2 = 35$.
- 28. Эллипс проходит через точки M_1 **(**; $\sqrt{3}$, M_2 **(**; 2]. Написать его уравнение, найти координаты фокусов и эксцентриситет.
- 29. Директрисой параболы, вершина которой находится в начале координат, является прямая 2x 3 = 0. Составить уравнение параболы и определить ее фокус.
- 30. Определить центр и радиус окружности $x^2 + y^2 8x + 12y 29 = 0$.
- 31. Найти расстояние между параллельными плоскостями 3x-5y+4z-24=0 и 12x-20y+16z+9=0.
- 32. Найти угол между плоскостями $x-y+\sqrt{2}z-5=0$ и $x+y+\sqrt{2}z+3=0$.

- 33. Найти расстояние от точки $M_0 \leftarrow 12; 7; -1$ до плоскости, проходящей через три точки $M_1 \leftarrow 3; 4; -7$ $M_2 \leftarrow 5; -4$ $M_3 \leftarrow 5; -2; 0$.
- 34. Написать канонические уравнения прямой $\begin{cases} 2x + y + z 2 = 0 \\ 2x y 3z + 6 = 0 \end{cases}$
- 35. Найти угол между прямыми $\frac{x-1}{2} = \frac{y+5}{-6} = \frac{z-7}{3}$ и $\frac{x-4}{1} = \frac{y+5}{2} = \frac{z-6}{-2}$.
- 36. Вычислить $\lim_{x \to -2} \frac{2 \sqrt{6 + x}}{\sqrt{7 x} 3}$.
- 37. Вычислить $\lim_{x \to 1} \left(\frac{1}{x-1} \frac{1}{x^2 1} \right)$.
- 38. Вычислить $\lim_{x \to 0} \frac{\sin x tgx}{4\sin^2 \frac{x}{2}}.$
- 39. Вычислить $\lim_{x\to 0} \frac{x^3 x^2 + 2x}{x^2 + x}$.
- 40. Вычислить $\lim_{x\to 0} \frac{\arcsin 5x}{tg2x}$.
- 41. Вычислить $\lim_{x \to -1} \frac{x^2 4x 5}{x^2 2x 3}$.
- 42. Вычислить $\lim_{x \to \infty} \left(\frac{x-5}{x-2} \right)^x$.
- 43. Вычислить $\lim_{x \to +\infty} \sqrt{x+5} \sqrt{x}$.
- 44. Вычислить $\lim_{x \to \infty} \frac{x^4 + 2x^3 1}{100x^3 + 2x^2}$.
- 45. Вычислить $\lim_{x \to \infty} \left(x \frac{x^3}{x^2 + 1} \right)$.
- 46. Дана функция $y = x \left(\arcsin x \right)^2 + 2\sqrt{1 x^2} \cdot \arcsin x$. Найти ее производную.
- 47. Найти производную третьего порядка y''' функции $y = x \cos x^2$.
- 48. Найти производную четвертого порядка $y = \frac{\ln (x-2)}{x-2}$.
- 49. Составить уравнение нормали к линии $y = x \ln x$, параллельной прямой 2x 2y + 3 = 0.
- 50. Составить уравнение касательной к графику функции $y = 2x^2 + 3$ в точке $x_0 = -1$.
- 51. Составить уравнение касательной к графику функции $y = \frac{1}{3x+2}$ в точке $x_0 = 2$.

- 52. Составить уравнение касательной и нормали к кривой $y = x^3 + 4x^2 1$ в точке $x_0 = -1$.
- 53. Написать уравнение касательной к графику функции $y = 14\sqrt{x} 15\sqrt[3]{x} + 2$ в точке $x_0 = 1$.
- 54. Показать, что функция $y = -\sqrt{\frac{2}{x^2} 1}$ удовлетворяет уравнению $1 + y^2 + xy \cdot y' = 0$.
- 55. Показать, что функция $y = \sqrt[3]{x \ln x 1}$ удовлетворяет уравнению $\ln x + y^3 3xy^2 \cdot y' = 0$.
- 56. Найти наибольшее и наименьшее значения функции $y = x + 2\cos x$ на отрезке $\left[-\frac{\pi}{4}; \frac{\pi}{3} \right]$.
- 57. Найти наибольшее и наименьшее значения функции $y = \frac{x+1}{x^2+3}$ на отрезке [0; 3].
- 58. Бак с квадратным основанием должен вмещать 27 л. Каковы должны быть его размеры, чтобы полная поверхность была наименьшей?
- 59. Из куска проволоки длиной 30 см требуется согнуть прямоугольник наибольшей площади. Каковы размеры этого прямоугольника?
- 60. При каком значении a кривая $y = x^4 + ax^3 + \frac{3}{2}x^2 + 1$ будет иметь выпуклость вниз на всей числовой прямой?
- 61. Найти экстремумы и промежутки монотонности функции $y = \frac{x^2}{x^2 1}$.
- 62. Вычислить приближенно $y = \sqrt[3]{2x^2 + 2x + 13}$ при x = -7.85.
- 63. Вычислить приближенно $y = \sqrt[4]{8x^2 + 6x 9}$ при x = 2,88.
- 64. Вычислить интеграл $\int \frac{3x+8}{(-2)(x+5)} dx$.
- 65. Вычислить интеграл $\int \frac{x^2 7x 6}{(-3)^2 + 9} dx$.
- 66. Вычислить интеграл $\int \frac{\sqrt[4]{arctgx}}{1+x^2} dx$.
- 67. Вычислить неопределенный интеграл $\int x \sqrt{x^2 7} dx$.
- 68. Вычислить интеграл $\int \frac{dx}{x \ln^3 x}$.

- 69. Вычислить интеграл $\int \sqrt{\frac{x}{6-x}} dx$.
- 70. Вычислить интеграл: $\int x^2 \ln x \, dx$.

- 1. Найти площадь фигуры, заключенной между параболой $y = x^2 2x + 2$, касательной к ней в точке (3; 5) и осью Oy.
- 2. Найти площадь фигуры, ограниченной линией $x = 8\cos t$, $y = 4\sin t$, если $0 \le x \le 8$.
- 3. Найти площадь фигуры, ограниченной линиями $y = 6x x^2$, x = -1, x = 3 и осью абсцисс.
- 4. Найти площадь фигуры, ограниченной линиями $y = \frac{6}{x}$, y = 7 x.
- 5. Найти площадь фигуры, ограниченной линией $\rho = e^{\varphi}, \ 0 \le \varphi \le \frac{\pi}{4}$.
- 6. Найти площадь фигуры, ограниченной линиями $y = (x-2)^3$, y = x. Выполнить чертеж.
- 7. Определить длину дуги кривой $\begin{cases} x = e^t \operatorname{Cos} t + \sin t \end{cases}$ где $0 \le t \le \pi$. $y = e^t \operatorname{Cos} t \sin t \end{cases}$
- 8. Определить длину дуги кривой $y = x\sqrt{x}$ от x = 0 до x = 5.
- 9. Определить длину дуги кривой $y = \frac{x^2}{4} + \frac{\ln x}{2}, 1 \le x \le 2$.
- 10. Определить длину дуги кривой $\rho = 7 \left(-\cos \phi \right) \frac{2\pi}{3} \le \phi \le \frac{2\pi}{3}$.
- 11. Определить длину дуги кривой $\, \rho = \sqrt{2} e^{\, \varphi} \, ,$ где $\, 0 \leq \varphi \leq \frac{\pi}{3} \, .$
- 12. Определить длину дуги кривой $x = 2\cos^3 t$, $y = 2\sin^3 t$, $0 \le t \le \frac{\pi}{4}$.
- 13. Определить длину дуги кривой $\rho = 1 \cos \varphi$, $0 \le \varphi \le \frac{\pi}{2}$.
- 14. Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной линиями $y = 3\cos x, \ y = \cos x, \ x = 0$ ($x \ge 0$). Выполнить чертеж.
- 15. Найти объем тела, образованного вращением вокруг оси Oy фигуры, ограниченной линиями $y = x^2$, $x = y^2$. Выполнить чертеж.
- 16. Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной линиями $y = x^2 2x + 1$, y = 0, x = 2. Выполнить чертеж.

- 17. Найти объем тела, образованного вращением вокруг оси Oy фигуры, ограниченной линиями $y = 4 x^2$, x = 0 ($x \ge 0$), y = 0. Выполнить чертеж.
- 18. Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной линиями $y = x^2$, x = 2, y = 1. Выполнить чертеж.
- 19. Найти объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями $y = e^x$, x = 0, x = 1, y = 0. Выполнить чертеж.
- 20. Найдите центр масс фигуры, ограниченной линиями $y^2 = 20x$, $x^2 = 20y$.
- 21. Найдите центр масс фигуры, ограниченной кривой $y = 2\sqrt{x}$, осью Ох и прямой x = 1.
- 22. Тело движется прямолинейно со скоростью $v = 2t^2 + 1$ (м/с). Найти путь, пройденный телом за первые 5 с.
- 23. Вычислите работу, которую надо затратить на сжатие пружины на $0,1\,$ м, если для сжатия ее на 0,01м нужна сила в 78 H.
- 24. Вычислить несобственный интеграл или установить его расходимость: $\int_{0}^{+\infty} \frac{x}{\sqrt{1+x^{-3}}} dx.$
- 25. Вычислить несобственный интеграл или установить его расходимость: $\int_{0}^{+\infty} xe^{-x^{2}} dx$.
- 26. Вычислить несобственный интеграл или установить его расходимость: $\int\limits_{2}^{4} \frac{1}{\sqrt[3]{4-x^{2}}} dx.$
- 27. Решить задачу Коши: $3x\sqrt[3]{y}dx + (-x^2)dy = 0$, y = 0.
- 28. Решить уравнение $y'' + 2y' + 5y = e^{-2x} (2 7x + 2)$.
- 29. Решить задачу Коши: $y'(-x^2) = xy + 1$, $y(\frac{\sqrt{3}}{2}) = \frac{2\pi}{3}$.
- 30. Решить уравнение $y'' + 5y' = 50\cos 5x$.
- 31. Решить задачу Коши: (x-3y)dx + xdy = 0, y(-1)dx = -1.
- 32. Решить уравнение $y'' 4y' + 5y = 2\cos x + 6\sin x$.
- 33. Решить уравнение $(x^2 + xy y^2) dx + x^2 dy = 0$.
- 34. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям: $y'' 4y' + 13y = e^{2x}\cos 3x$, $y \bullet = 1$, $y' \bullet = -1$.
- 35. Дано $z=x^2\sin^2\,y$. Вычислить $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ в точке $\left(-1;\,\frac{\pi}{4}\right)$.
- 36. Для функции $z = \sqrt{2xy + y^2}$ найти частные производные первого и второго порядков.

- 37. Показать, что функция $z = \ln {\bf r}^2 + y^2$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 38. При каком значении a функция $z = x^3 + axy^2$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0?$
- 39. Показать, что $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 1$, если $u = x + \frac{x y}{y z}$.
- 40. Найти экстремум функции $z = x^3 + y^3 9xy$.
- 41. Исследовать на экстремум функцию $z = x^4 + y^4 2x^2 + 4xy 2y^2$.
- 42. Исследовать на экстремум функцию $z = x^4 + y^4 2x^2 + 4xy 2y^2$
- 43. Исследовать на экстремум функцию $z = x^2 + y^2 + xy 3x 6y$.
- 44. Исследовать на экстремум функцию $z = (-1)^2 + 2y^2$.
- 45. Найти наибольшее и наименьшее значение функции $z = x^2 + y^2 xy + x + y$ замкнутой области D: x = 0, y = 0, x + y = -3.
- 46. Найти наибольшее и наименьшее значение функции $z = x^2 2y^2 + 4xy 6x 1$ в замкнутой области D: x = 0, y = 0, x + y = 3.
- 47. Найти наибольшее и наименьшее значение функции z = xy в замкнутой области $D: x^2 + y^2 \le 1.$
- 48. Вычислить двойной интеграл по области, ограниченной указанными линиями: $\iint xy dx dy, D: y = 0, y = 1 - x^2.$
- 49. Вычислить двойной интеграл по области, ограниченной указанными линиями: $\iint \mathbf{C} + y \, dx \, dy, \ D: x = 0, \ y = 0, \ x + y = 3.$
- 50. Вычислить двойной интеграл по области, ограниченной указанными линиями: $\iint x \sqrt{y} dx dy, \quad D: \ y = 1, \quad y = x, \quad y = 3x.$
- 51. Вычислить двойной интеграл по области, ограниченной указанными линиями: $\iint x^3 dx dy, \ D: x = 0, \ y = x, \ y = 2 - x^2.$
- 52. Изменить порядок интегрирования $\int_{2}^{4} \frac{x}{dx} \int_{2}^{x} f(x, y) dy.$ 53. Изменить порядок интегрирования $\int_{0}^{3} \frac{dy}{y} \int_{0}^{x} f(x, y) dx.$ 54. Изменить порядок интегрирования $\int_{0}^{3} \frac{9-x^{2}}{0} f(x, y) dy.$

- 55. С помощью двойного интеграла найти площадь плоской области, ограниченной линиями $y=0,\ y=4,\ y=-x,\ y=\frac{x-1}{2}$.
- 56. С помощью двойного интеграла найти площадь плоской области, ограниченной линиями $y = \frac{9}{x}$, y = x, x = 6.
- 57. С помощью двойного интеграла найти площадь плоской области, ограниченной линиями $y^2 = -x$, x = -4.
- 58. С помощью двойного интеграла найти объем тела, ограниченного поверхностями 3x + 2y + z 6 = 0, x = 0, y = 0, z = 0.
- 59. С помощью двойного интеграла найти объем тела, ограниченного поверхностями $y = \sqrt{x}, \ y = 2\sqrt{x}, \ x + z = 4, \ z = 0$.
- 60. Вычислить момент инерции однородного квадрата со стороной, равной 2, относительно одной из его вершин.
- 61. Найти центр тяжести однородной плоской фигуры, ограниченной окружностями $x = 2\cos\varphi, \ y = 4\cos\varphi.$
- 62. Найти координаты центра тяжести однородной плоской фигуры, ограниченной линиями $y = \sqrt{2x x^2}$, y = 0 .
- 63. Вычислить тройной интеграл по области, ограниченной указанными поверхностями $\iiint_G x^2 + y^2 + z^2 \, dx \, dy \, dz, \ G: x = 0, \ x = a, \ y = 0, \ y = b, \ z = 0, \ z = c \, .$

- 66. Вычислить тройной интеграл по области, ограниченной указанными поверхностями $\iiint_G \mathbf{x} + 3y z \, dx \, dy \, dz, \ G: x = 0, \ y = 0, z = 0, \ x + y = 3, \ z = 4.$
- 67. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями $x=0,\ y=1,\ y=3,\ z=0,\ x+2z=3.$
- 68. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями $y = 4 x^2$, $y = x^2 + 2$, z = -1, z = 2.
- 69. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями $x^2 + y^2 = 1$, y + z = 2.
- 70. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями $y = x^2$, y = 1, x + y + z = 3, z = 0.
- 71. С помощью тройного интеграла найти статические моменты относительно координатных плоскостей пирамиды, образованной плоскостями x+y+z=2, x=0, y=0, z=0, если плотность в каждой точке численно равна абсписсе этой точки.

- 72. С помощью тройного интеграла найти координаты центра тяжести однородного тела, ограниченного поверхностями $z^2 = xy$, x = 5, y = 5, z = 0.
- 73. С помощью тройного интеграла найти момент инерции относительно оси Оz тела, ограниченного плоскостями y=4, z=0, z=1 и цилиндром $y=x^2$, если плотность в каждой точке численно равна аппликате этой точки.
- 74. Вычислить криволинейный интеграл $\int_{L} xy^2 dL$, где L- отрезок прямой между точками $A \mathbf{Q}; 0, B \mathbf{Q}; 3$.
- 75. Вычислить криволинейный интеграл $\int_{L} (5 + 8xy) dL$, где L- дуга кривой $4y = x^4$ между точками, для которых x = 0, x = 1.
- 76. Вычислить криволинейный интеграл $\int\limits_{L} y \sqrt{y^2 + 1} \, dL$, где L- дуга кривой $x = \ln y$ между точками, для которых $y = 1, \ y = 4$.
- 77. Вычислить криволинейный интеграл $\int \mathbf{Q} x + y \, dL$, где L- контур треугольника ABO с вершинами $A \in 0$, $B \in 2$, $O \in 0$.
- 78. Вычислить криволинейный интеграл $\int_L xy dL$, где L- дуга винтовой линии $x = a\cos t, \ y = a\sin t, \ z = bt$, ограниченная точками, для которых $t = 0, \ t = \frac{\pi}{2}$.
- 79. Вычислить криволинейный интеграл второго рода $\int_L x^2 dx + xy^2 dy$, где L- отрезок прямой от точки A (3, 1) до точки B (3, 2).
- 80. Вычислить криволинейный интеграл второго рода $\int_{L} (3+y) dx + (4+y^3) dy$, где Lломаная ABC, причем A(3,1) B(3,1) C(3,5).
- 81. Вычислить криволинейный интеграл второго рода $\int_L x^2 dx + \frac{dy}{y^2}$, где L- дуга кривой xy = 1 от точки A (; 1) до точки B (4; $\frac{1}{4}$).
- 82. Вычислить криволинейный интеграл второго рода $\int\limits_{L} \P^2 + z^2 \, dx + yz dy + x dz, \ \text{где}$ $L\text{- дуга винтовой линии } x = t, \ y = 2\cos t, \ z = 2\sin t \bigg(0 \le t \le \frac{\pi}{2}\bigg).$
- 83. Определить, является ли плоское векторное поле \overline{F} **(**, y) = $e^y \cdot \overline{i} + xe^y \overline{j}$ потенциальным. Если да, найти его потенциал, т. е. функцию f такую, что $\overline{F} = \nabla f$.

- 84. Определить, является ли плоское векторное поле \overline{F} **(**, y) = $e^y \cdot \overline{i} + xe^y \overline{j}$ потенциальным. Если да, найти его потенциал, т. е. функцию f такую, что $\overline{F} = \nabla f$.
- 85. Дано плоское скалярное поле $\varphi=2x^2-xy^2$, точка M_0 **(**1; -2) и направление $\bar{l}=-3\bar{i}+4\bar{j}$. Найти $\operatorname{grad}\varphi$ в точке M_0 и производную $\frac{\partial\varphi}{\partial\bar{l}}$ в точке M_0 по направлению \bar{l} .
- 86. Дано плоское скалярное поле $\varphi=3x^4y^2-5x^2y$, точка M_0 **(**1; 1] и направление $\bar{l}=-6\bar{i}+8\bar{j}$. Найти $\operatorname{grad}\varphi$ в точке M_0 и производную $\frac{\partial\varphi}{\partial\bar{l}}$ в точке M_0 по направлению \bar{l} .
- 87. Найти $grad\ r$, если $r = \sqrt{x^2 + y^2 + z^2}$.
- 88. Показать, что поле $\overline{F} = (x+z)^2 + (x+z)^2 + (x+y)^2 + (x+$
- 89. Показать, что поле $\overline{F}=2y\overline{i}-z\overline{j}+2x\overline{k}$ является соленоидальным.

Критерии оценки компетенций

Промежуточная аттестация студентов по дисциплине «Высшая математика» проводится в соответствии с Уставом университета, Положением о текущем контроле успеваемости и промежуточной аттестации студентов по программам ВО. Промежуточная аттестация по дисциплине «Высшая математика» проводится в соответствии с рабочим учебным планом в первом и втором семестрах в форме экзамена. Студенты допускаются к экзамену по дисциплине в случае выполнения им учебного плана по дисциплине, т.е. выполнения всех заданий и мероприятий, предусмотренных рабочей программой дисциплины.

Оценка знаний студента на экзамене носит комплексный характер, является балльной и определяется его:

- ответом на экзамене;
- результатами автоматизированного тестирования знания основных понятий.
- активной работой на практических занятиях.

Знания, умения, навыки студента на экзамене оцениваются оценками: **«отлично»**, **«хорошо»**, **«удовлетворительно»**, **«неудовлетворительно»**.

Пример оценивания студента на экзамене по дисциплине «Высшая математика»

Знания, умения, навыки студента на экзамене оцениваются оценками: «отлично» - 13-15, «хорошо» - 10-12, «удовлетворительно» - 7-9, «неудовлетворительно» - 0.

Оценивание студента на экзамене

Оценка	Баллы	Требования к знаниям
	15	- Студент свободно справляется с решением практических задач, причем не затрудняется с решением при видоизменении заданий, правильно обосновывает принятое решение, глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает на экзамене, умеет тесно увязывать теорию с практикой.
«отлично»	14	- Студент свободно справляется с решением практических задач, причем не затрудняется с решением при видоизменении заданий, правильно обосновывает принятое решение, твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы.
	13	- Студент справляется с решением практических задач, причем не затрудняется с решением при видоизменении заданий, при этом при обосновании принятого решения могут встречаться незначительные неточности, твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы.
	12	- Студент справляется с решением практических задач, однако видоизменение заданий могут вызвать некоторое затруднение, правильно обосновывает принятое решение, твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы.
«хорошо»	11	- Студент справляется с решением практических задач, однако видоизменение заданий могут вызвать некоторое затруднение, при этом при обосновании принятого решения могут встречаться незначительные неточности, твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы.
	10	- Студент справляется с решением практических задач, однако видоизменение заданий могут вызвать некоторое затруднение, при этом при обосновании принятого решения могут встречаться незначительные неточности, в основном знает материал, при этом могут встречаться незначительные неточности в ответе на вопросы.
«удовлетвори тельно»	9	- Студент с трудом справляется с решением практических задач, теоретический материал при этом может грамотно изложить, не допуская существенных неточностей в ответе на вопросы.
1Clibrio//	8	- Студент с большим трудом справляется с решением практических задач, теоретический материал при этом может грамотно изложить, не допуская существенных

		неточностей в ответе на вопросы.	
	7	- Студент с большим трудом справляется с решением практических задач, теоретический материал при этом излагается с существенными неточностями.	
«неудовлетвори тельно»	0	- Студент не знает, как решать практические задачи, несмотря на некоторое знание теоретического материала.	

Основная оценка, идущая в ведомость, студенту выставляется в соответствии с бально-рейтинговой системой. Основой для определения оценки служит уровень усвоения студентами материала, предусмотренного данной рабочей программой.

Оценивание студента по бально-рейтинговой системе дисциплины «Высшая математика»:

Активная работа на практических занятиях оценивается действительным числом в интервале от 0 до 6 по формуле:

$$O$$
ц. активности = $\frac{\Pi p. aктивн}{\Pi p. oбщеe} \cdot 6$,

где Оц. активности - оценка за активную работу;

 $\Pi p.a\kappa muвн$ — количество практических занятий по предмету, на которых студент активно работал;

Пр.общее — общее количество практических занятий по изучаемому предмету.

Максимальная оценка, которую может получить студент за активную работу на практических занятиях, равна 6.

Результаты тестирования оцениваются действительным числом в интервале от 0 до 4 по формуле:

$$O_{y.mecmup} = \frac{Y_{ucno \ npaвuльных \ omветов}}{Bcero \ вonpocoв \ в \ mecme} \cdot 4,$$

где Ои.тестир. - оценка за тестирование.

Максимальная оценка, которую студент может получить за тестирование, равна 4.

Оценка за экзамен ставится по 15 бальной шкале (см. таблицу выше).

Общая *оценка* знаний по курсу строится путем суммирования указанных выше оценок:

Ввиду этого общая оценка представляет собой действительное число от 0 до 25. Отлично - 25- 21 баллов, хорошо - 20-16 баллов, удовлетворительно - 15-11 баллов, не удовлетворительно - меньше 11 баллов. (Для перевода оценки в 100 бальную шкалу достаточно ее умножить на 4).

3.2. Оценочные средства для проведения текущего контроля знаний по дисциплине

Карта оценочных средств текущего контроля знаний по дисциплине

No	Раздел дисциплины	· · · · · · · · · · · · · · · · · · ·	Контролируемые Контролируемые Другие оцен		ючные
п/п	т издел днециилины	дидактические единицы	компетенции	средства	
11/11		дидакти теские единицы	(или их части)		
			(min nx ncin)	вид	кол-во
1	п ч	M II V	OK 7	т •	1
1	Линейная и	Матрицы. Действия над	ОК-7	Тестовый	1
	векторная алгебра	матрицами. Определители		контроль	
		второго и третьего			
		порядков. Системы		Индивидуа	1
		линейных уравнений.		льная	
		Метод Крамера. Понятие		работа	
		обратной матрицы. Решение			
		систем линейных уравнений		Опрос	1
		с помощью обратной			
		матрицы. Метод Гаусса.			
		Векторы. Линейные			
		операции над векторами.			
		Координаты вектора. Длина			
		вектора. Проекция вектора			
		на ось, ее свойства.			
		Разложение вектора по			
		базису. Действие с			
		векторами в координатной			
		_			
		форме. Скалярное			
		произведение векторов, его			
		свойства и вычисление.			
		Векторное произведение			
		векторов, его свойства и			
		вычисление. Смешанное			
		произведение векторов.			
		Геометрические и			
		физические приложения			
		векторного и смешанного			
		произведений.			
2	Аналитическая	Метод координат.	ОК-7	Тестовый	1
	геометрия на	Полярная система		контроль	
	плоскости и в	координат. Простейшие		•	
	пространстве	задачи аналитической		Индивидуа	1
	r · · · · ·	геометрии на плоскости.		льная	
		Понятие об уравнении		работа	
		линии. Способы задания		paccia	
		линии. Прямая на		Опрос	1
		плоскости. Уравнения		Onpot	1
		прямой. Расстояние от			
		точки до прямой. Линии			
		второго порядка.			
		Окружность. Эллипс.			
		Гипербола. Парабола.			
		Плоскость. Уравнения			
		плоскости. Угол между			

		плоскостями. Расстояние			
		от точки до плоскости.			
		Прямая в пространстве.			
		Канонические и			
		параметрические			
		уравнения прямой в			
		пространстве.			
3	Функция. Предел	Понятие функции.	ОК-7	Тестовый	1
	функции	Способы задания		контроль	
	17	функции. Виды функций.		F	
		Понятие		Индивидуа	1
		последовательности.		льная	•
		Предел		работа	
		последовательности.		paoora	
		Основные правила		Owner	
		вычисления предела		Опрос	
		последовательности.			
		Предел функции.			
		Односторонние пределы.			
		Бесконечно большие и			
		бесконечно малые			
		функции. Эквивалентные			
		бесконечно малые			
		функции. Основные			
		теоремы о пределах.			
		Признаки существования			
		предела. Замечательные			
		пределы. Понятие			
		непрерывности функции.			
		Классификация точек			
		разрыва. Асимптоты			
		графика функции			
4	Дифференциальное	Понятие производной.	ОК-7	Тестовый	1
-	исчисление	Геометрический и	OK /	контроль	1
		механический смысл		контроль	
	функции одной			IA	1
	переменной	производной.		Индивидуа	1
		Дифференцируемость		льная	
		функции. Понятие		работа	
		дифференциала функции.			
		Геометрический смысл		Опрос	
		дифференциала.			
		Приближенные			
		вычисления с помощью			
		дифференциала.			
		Правила			
		дифференцирования.			
		Производные основных			
		элементарных функций.			
		Производная сложной			
		функции. Производные и			
		дифференциалы высших			
		порядков. Правило			
		порядков. Правило			

	Г		T	l	
		Лопиталя. Основные			
		теоремы			
		дифференциального			
		исчисления.			
		Критерий монотонности			
		функции. Экстремумы			
		функции. Необходимое и			
		достаточное условия			
		экстремума. Направление			
		выпуклости графика			
		функции. Точки перегиба.			
		Полное исследование и			
		построение графика			
		функции.			
5	Неопределенный	Понятие первообразной	ОК-7	Тестовый	1
	интеграл	функции.		контроль	
	_	Неопределенный		_	
		интеграл. Свойства			
		неопределенного			
		интеграла. Таблица			
		основных интегралов.			
		Основные методы			
		интегрирования:			
		непосредственное			
		интегрирование, метод			
		подстановки, метод			
		интегрирования по			
		частям.			
		Интегрирование			
		рациональных функций.			
		Интегрирование			
		иррациональных			
		функций.			
		Тригонометрические			
		подстановки.			
6	Определенный	Определенный интеграл.	ОК-7	Тестовый	1
	интеграл.	Геометрический смысл		контроль	•
	mitorpan.	определенного интеграла.		Koniponi	
		Свойства определенного		Индирили	1
				Индивидуа	1
		интеграла. Формула		льная	
		Ньютона-Лейбница.		работа	
		Замена переменной в			
		определенном интеграле.		Опрос	
		Интегрирование по			
		частям.			
		Вычисление площади			
		криволинейных фигур.			
		Длина дуги кривой.			
		Объем тела вращения.			
		Центр тяжести плоской			
		фигуры. Моменты			
		инерции.			
	L	инсрции.	<u>I</u>		

	1			,
		Несобственные интегралы		
		1 и 2 рода.		
		Приближенное		
		вычисление определенных		
		интегралов: формула		
		трапеций, формула		
	- 44	Симпсона.	074 -	
7	Дифференциальные	Дифференциальные	ОК-7	Опрос
	уравнения	уравнения: основные		
		понятия. Начальные		
		условия, задачи Коши.		
		Дифференциальные		
		уравнения 1 порядка: с		
		разделяющимися		
		-		
		переменными,		
		однородные.		
		Линейные		
		дифференциальные		
		уравнения 1 порядка.		
		Уравнения Бернулли.		
		Комплексные числа.		
		Дифференциальные		
		уравнения 2 порядка,		
		допускающие понижения		
		порядка.		
		Дифференциальные		
		уравнения 2 порядка.		
		Задача Коши. Линейные		
		однородные		
		дифференциальные		
		уравнения 2 порядка с		
		постоянными		
		коэффициентами.		
		Линейные неоднородные		
		-		
		дифференциальные		
		уравнения 2 порядка с		
		постоянными		
		коэффициентами.		
8	Функции	Функции многих	ОК-7	Опрос
	нескольких	переменных. Функции		_
	переменных	двух переменных: понятие,		
	r	область определения,		
		график.		
		Полный дифференциал		
		Частные производные		
		первого, второго порядков.		
		Экстремум функции двух		
		переменных.		
		Двойной интеграл.		
		Тройной интеграл и его		
		вычисление.		
		Криволинейные интегралы		
		триволипсиные интегралы		

1 рода (по длине дуги).		
Криволинейные интегралы		
2 рода (по координатам).		
Поверхностные интегралы		
1 и 2 рода. Производная по		
направлению. Градиент.		
Поток векторного поля.		
Дивергенция. Ротор		

Тестовые задания для промежуточной аттестации и текущего контроля знаний студентов

1 семестр (экзамен)

1. Если заданы матрицы $A = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$, тогда матрица A + 2B равна

1) $\begin{pmatrix} 1 & 2 \\ 4 & -1 \end{pmatrix}$ 2) $\begin{pmatrix} 0 & 2 \\ 2 & -1 \end{pmatrix}$ 3) $\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ 4) $\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix}$ 5) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

 $\begin{vmatrix} 1 & -2 & 4 \\ 2 & 1 & 5 \\ 3 & 4 & -2 \end{vmatrix}$ равно:

5) - 40. 1)0 2) 20

- 3. Решением системы $\begin{cases} x y + 2z = 3, \\ -x + y + z = 0, \text{ является} \\ x + y = 1. \end{cases}$
- 4. Если заданы векторы $\vec{a}(-3;2;6)$; $\vec{b}(0;-3;-1)$ и $\vec{c}(2;2;-2)$, то алгебраическая сумма координат вектора $\vec{d} = \vec{a} - \vec{b} + \vec{c}$ равна 1) 7 2) 8 3) 9 4) 10 5) 11.
- 5. В треугольнике ABC сторона AB разделена точкой M в отношении 1:4, считая от точки A . Тогда разложение вектора \overline{CM} по векторам $\overline{a}=\overline{CA}$ и $\overline{b}=\overline{CB}$ имеет вид 2) $4\bar{a} + \bar{b}$ 3) $\frac{4}{5}\bar{a} - \frac{1}{5}\bar{b}$ 4) $\frac{1}{5}\bar{a} + \frac{4}{5}\bar{b}$

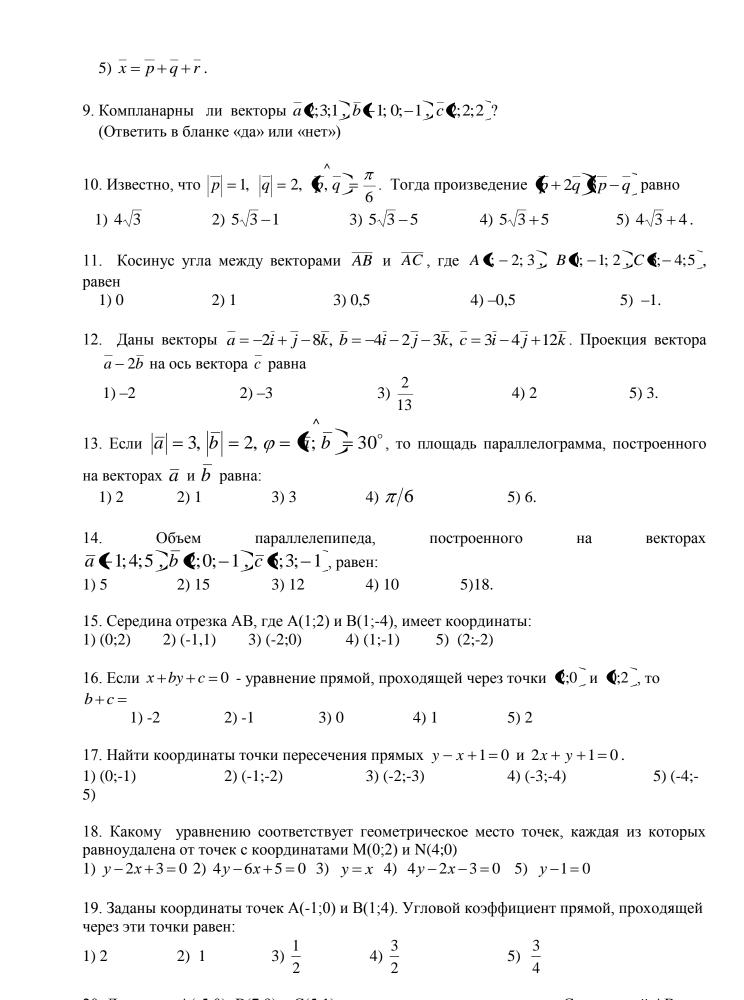
1) $\frac{4}{5}\bar{a} + \frac{1}{5}\bar{b}$

6. Длина вектора $\bar{a} = -\bar{i} + 4\bar{j} + 2\bar{k}$ равна

1) $\sqrt{5}$

2) $\sqrt{19}$ 3) $\sqrt{21}$

4) 5


5) 9.

7. Координаты вектора \overline{AB} , где A (; -2; 3), B (); -1; 2], имеют вид 1) (; -1; 1] 2) (1; -1; 1] 3) (1; 1; 1] 4) (1; 1; -1]

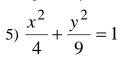
(3, 5)

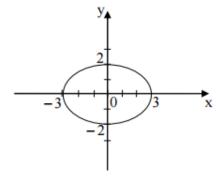
5)

8. Разложение вектора \bar{x} **(**2; 4; 7) по векторам \bar{p} **(**5;1;2), \bar{q} **(**50;1), \bar{r} **(**1;2;4) имеет вид 1) $\overline{x} = 2\overline{p} - \overline{q} + \overline{r}$ 2) $\overline{x} = \overline{p} - 2\overline{q} + 2\overline{r}$ 3) $\overline{x} = \overline{p} + \overline{q} + 2\overline{r}$ 4) $\overline{x} = 2\overline{p} + \overline{q} - \overline{r}$

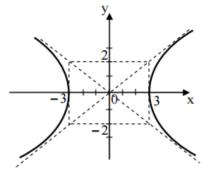
20. Для точек А(-5;0); В(7;9) и С(5;1) определить расстояние от точки С до прямой АВ.

- 1) 2
- 2) 4.4
- 3) 3,6
- 4) 2,8
- 5) 5,2.
- 21. Какие отрезки отсекает на осях координат Ох и Оу прямая 2x + 3y 12 = 0:

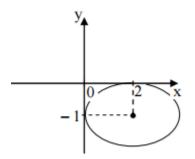

- 3) 4 и 6
- 4) 6 и 4
- 5) 24 и 36.
- 22. Площадь треугольника, образованного прямой 4x + 3y 36 = 0 с осями координат, равен
- 1) 36
- 2) 54
- 3) 12
- 4) 9
- 5) 24.
- 23. Кривая, изображенная на рисунке, определяется уравнением

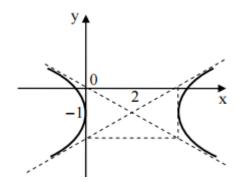


2)
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

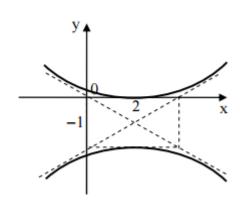


4)
$$\frac{x^2}{9} - \frac{y^2}{4} = 0$$

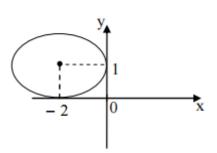

- 24. Расстояние между фокусами кривой, изображенной на рисунке, равно:
- 1) $2\sqrt{13}$
- 2) $2\sqrt{5}$ 4) 10
- 3) 2
- 5) 26

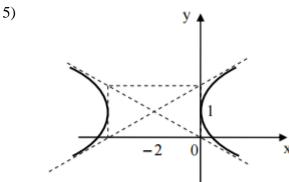


- 25. Эксцентриситет кривой, заданной уравнением $\frac{x^2}{16} + \frac{y^2}{9} = 1$, равен:
- 1) $\frac{5}{4}$ 2) $\frac{\sqrt{7}}{4}$ 3) $\frac{5}{3}$ 4) $\frac{4}{3}$ 5) $\frac{3}{4}$.


- 26. Асимптоты гиперболы $\frac{x^2}{16} \frac{y^2}{4} = 1$ определяются уравнениями:
- 1) $y = \pm 2x$ 2) $y = \pm \frac{1}{2}x$ 3) $y = \pm 4x$ 4) $y = \pm x$
- 5)

- $y = \pm \frac{1}{4}x$
- 27. Кривая, заданная уравнением $x^2 + 4y^2 4x + 8y + 4 = 0$, изображена на рисунке:
- 1)





4)

- 28. Уравнение $(-2)^3 + 4(+1)^3 = 4$ определяет на плоскости:
- 1) гиперболу
- 2) параболу
- 3) эллипс

- 5) две пересекающиеся прямые
- 29. Параметр p для параболы $y^2 = 4x$ равен:
- 1) 2
- 2) -2
- 3) 1
- 5)4.
- 30. Вершина параболы $(+3)^3 = 4(-2)^2$ имеет координаты: 1) (3; -2) 2) (-3; 2) 3) (-3; -2) 4) (3; 2) 5) (2; 3). 31. Область определения функции $y = \sqrt{2 x x^2}$ равна: 1) (-2; 1) 2) (-2; -1) 3) [-1; 2] 4) [-1; 2] 5) нет правильного ответа

- 32. Значение предела $\lim_{x \to -2} \frac{x^3 + 8}{x^2 4}$ равно 1) -3 2) -1 3) 0 4

- 4) ∞ 5) -2.
- 33. Значение предела $\lim_{x\to\infty} \sqrt{x+2} \sqrt{x}$ равно
- 1) **∞**
- 2) 0
- 3) 1
- 4) 0,5
- 5) 2.
- 34. Значение предела $\lim_{x\to 10} \frac{\sqrt{x-1}-3}{x-10}$ равно

U	3			10	
35. Значение	е предела lim	$\int_{-\infty}^{1} \frac{2x^2 + 3x - 1}{x^2 - 5}$	<u>25</u> равно		
1) 1	2) 2	$x^2 - 5$	4) 4	5) 5.	
36. Значение	е предела $\lim_{x \to a} x \to a$	$\int_{0}^{1-\cos 2x} \int_{0}^{1-\cos 2x} \int_{0$	оавно		
1) 0,5	2)2	3)0	4)∞	5) 1.	
37. Значение	е предела $\lim_{x \to a} x \to a$		равно		
1) <i>e</i>	2) e^{-6}	3) 1	4)0	5) 0,5.	
38. Точка x_0	₎ = 3 являетс	я для функциі	$y = \frac{x^2 - x^2}{x^2 - 4}$	$\frac{-9}{x+3}$	
1) точкой ус	тпанимого па	วทุเหล	2) точкой n a	и т 5 папыва 1	пола
3) точкой ра	транимого ра зрыва 2 рода	зрыва	 4) не являет 	ся точко	роди роди
	льного ответа		i) iie mbimer	CH TO INC	on puspillu
			й укажите те	, которі	ые не относятся к свойствам
	прерывных на		J	, 1	
1. Всякая не	епрерывная на	а отрезке фунг	кция имеет на	а этом о	трезке как наибольшее, так и
наименьшее					
			ункция имеет	г на эт	ом отрезке отрицательные и
	ные значения.				
	_		принимающая	я на ко	нцах непрерывные значения,
-	плюбое проме	•	а принимаю	11120 112	концах неравные значения,
	ывная на отј гулевое значег		я, принимаю	щая на	концах неравные значения,
-	•		езке и на его	концах	принимает значения разного
		-			ия обращается в нуль.
1) 2	2) 3	3) 4	4) 2 и 4		5) 5 и 3.
				. 3	
					является прямая
1) $y = 1$	2) $x = -1$	3) $x = 1$	4) $y = -1$		5) $y = x + 1$.
41. Установи	ите соответст	вие между сто		1	
1) $y = x^4$	$4 + 3x^2 - 2x$	+1	a) $y' = $		2
2) y = 10	$g_2 x + 3x^3$		6) y' = 2	2xtgx +	$\frac{x^2}{\cos^2 x}$
3) $y = 3^{\frac{3}{2}}$	$\sqrt[3]{x} - \sin x$		B) $y' = -$	$\frac{5}{\sqrt{1-x^2}}$	+3
$4) \ y = x^2$	2tgx		$\Gamma) y' = 4$		

1) $\frac{1}{6}$ 2) $\frac{1}{3}$ 3) 1 4) 0

5) $\frac{3}{10}$.

5)
$$y = 5 \arcsin x + 3x$$

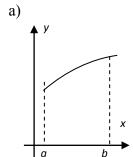
$$y' = \frac{2}{\sqrt[3]{x}} - \cos x.$$

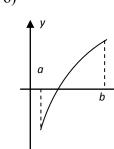
- 42. Значение производной функции $y = \ln \sin \frac{2x+4}{x+1}$ в точке $x_0 = 0$ равно 1) 4ctg4 2) 2tg4 3) -2ctg4 4) -2tg4 5) 2ctg2.

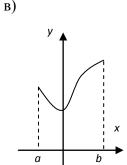
- 43. Значение производной функции $y = (2+1)^{3/3}$ в точке $x_0 = 1$ равно 1) 3 2) 6 3) $3\ln 2$ 4) 2(n8+1) 5) 4(n8+1).

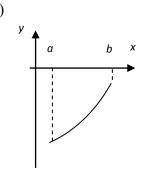
- 44. Функция $y = \frac{(-1)^2}{(+1)^3}$ возрастает в интервале

 1) $(-\infty; -1)$ 2) (-5) 3) (-1;1) 4) (-1;5) 5) $(-5; +\infty)$.


- 45. Число точек экстремума функции $y = x^2 e^{-x^2}$ равно 1) 1 2) 2 3) 4 4) 3


- 46. Если m и M наименьшее и наибольшее значения функции $y = x + \frac{25}{y + 4}$ на отрезке
- [-2;6], то значение m+2M равно
 - 1)7
- 2) 27
- 3) 22.5
- 4) 26,5
- 47. Угол наклона к оси Ox касательной к графику функции $y = x \frac{1}{4}x^2$ в точке (4; 0)
 - равен
 - 1) 45°
- 2) 30°
- $3) 60^{\circ}$ 4) 120°
- 48. Производная второго порядка y'' функции $y = \arcsin \frac{x}{2}$ имеет вид


- 1) $\frac{x}{\sqrt{4-x^2}}$ 2) $\frac{1}{\sqrt{4-x^2}}$ 3) $\frac{2}{\sqrt{1-\frac{x^2}{x^2}}}$ 4) $\frac{2x}{3\sqrt{1-4x^2}}$


5)

- $-\frac{x}{\sqrt{1-4x^2}}$.
- 49. Среди функций, заданных на рисунках графически, укажите те, для которых на всем отрезке [y;b] выполняются три условия: y > 0, y' > 0, y'' < 0.

- 1) только б
- 2) только а
- 3) только б и в
- 4) только г
- 5) только а и в.

50. Достаточным условием возрастания		
1) $f'(x) < 0$ в любой точке $x \in (a; b)$ 3) $f'(x) > 0$ в любой точке $x \in (a; b)$	2) f" () < (0 в любой точке $x \in (a; b]$
3) $f'(x) > 0$ в любой точке $x \in (a; b)$	4) f" () () в любой точке $x \in (a; b]$
5) f' $= 0$ в любой точке $x \in \{a; b\}$		
51. Если функция $y = f$ (с) определен	на на $oldsymbol{q}; b$ и для	и всех $x \in (a; b)$ выполняется
f'' (≤ 0 , то функция $y = f$ () на (q	_	
1) убывает 2) возрастает		4) выпукла вниз
5) тождественно равна 0.		
52. Дифференциал функции $y = \arcsin$		
1) 0,1 2) -0,1 3) 0,4		
53. Приближенное значение функции у		
1) 26,973 2) 26,963 3) 26,983		
54. Производная второго порядка для фу	тикции $y = \mathbf{Q}x + 5$	равна
1) $6(x+5)^2$ 2) $3(x+5)$		
55. Материальная точка движется пря	молинейно по зако	$S = t^3 - \frac{3}{2}t^2 + 2t - 1.$
Тогда ускорение этой точки будет равно	$9 \text{ м/c}^2 в момент врем$	мени
1) 2 c 2) 3 c 3) 4 c		
56. Уравнение касательной к графику фу	$y = 2x^3 + 2$	$x^2 - 3x + 6$ в точке $x_0 = -1$
имеет вид 1) и = 9 гг 2) и = 9 гг	2) 11 - 12 9	4) $y = 9y + 1$
1) $y = 8 - x$ 2) $y = 8 + x$	$3) \ \ y = x - 8$	$4) \ \ y = 6x + 1$
5) $y = 8x - 1$.		
57. Значение интеграла $\int \cos 3x dx$ равн	10	
$1) \sin 3x + C \qquad 2) 3\sin 3x + C$	$3) \frac{1}{3}\sin 3x + C$	$4) \frac{1}{3}\sin x + C$
5) $\frac{1}{3}\sin\frac{x}{3} + C$.		
58. Значение интеграла $\int \frac{dx}{\sqrt{x^2 + 6x + 10^2}}$	= равно)	
1) $\ln \left x + 3 + \sqrt{x^2 + 6x + 10} \right + C$	2) $\ln x + 1 + \sqrt{x^2 + 1}$	-6x+10 + C
	4) $2\sqrt{x^2 + 6x + 10}$	
5) $\ln \left \sqrt{x^2 + 6x + 10} \right + C$.		
59. Значение интеграла $\int \frac{dx}{\sqrt{2x+3}}$ равно	0	
1) $6\sqrt{2x+3} + C$ 2) $3\sqrt{2x+3}$	+C 3) 2	$\sqrt{2x+3}+C$
4) $4\sqrt{2x+3} + C$ 5) $\sqrt{2x+3} + C$		

1)
$$t = x^2$$
 2) $t = 9 - x^2$ 3) $x = \sin t$ 4) $x = 3\sin t$ 5) $x = tg\frac{t}{2}$.

3)
$$x = \sin t$$

4)
$$x = 3\sin t$$

$$5) \ x = tg \, \frac{t}{2}.$$

Ключ теста (экзамен в 1 семестре)

Ключ теста (экзамен в т семестре)								
№ вопроса	№ правильного ответа	№ вопроса	№ правильного ответа	№ вопроса	№ правильного ответа	№ вопроса	№ правильного ответа	
1	1	11	5	21	4	31	5	
2	5	12	1	22	2	32	1	
3	1; 0; 1	13	3	23	3	33	2	
4	5	14	2	24	1	34	1	
5	1	15	4	25	2	35	2	
6	3	16	2	26	2	36	2	
7	4	17	1	27	1	37	2	
8	1	18	3	28	3	38	3	
9	нет	19	1	29	1	39	4	
10	3	20	5	30	2	40	2	
41	гадбв	42	3	43	4	44	2	
45	4	46	2	47	5	48	2	
49	2	50	3	51	3	52	2	
53	2	54	3	55	1	56	1	
57	3	58	1	59	5	60	4	

2 семестр (экзамен)

1. Значение интеграла	$\int_{0}^{3} (x^2 + 4x) dx$ pashed
	\cap

1) 24

2) 25 3) 18 4) 9

5) 27.

2. Значение интеграла $\int_{0}^{\pi/2} 5 \sin^4 x \cos x dx$ равно 1) 1 2) $\sqrt{2}$ 3) $\sqrt{3}$ 4) 0

5) 5.

3. Значение интеграла $\int_{0}^{e} \ln x dx$ равно

1) 1

2) 0

3) e-1 4) e+1 5) 2e.

4. Несобственный интеграл $\int_{-\infty}^{+\infty} \frac{dx}{x \ln^3 x}$ равен:

1) 0,5 2) $\frac{1}{3}$ 3) +\infty 4) 1 5) e^3 .

5. Несобственный интеграл $\int_{0}^{0} e^{2x} dx$ равен:

1)0

 $\begin{array}{ccc}
-\infty \\
3) + \infty & 4) - \infty & 5) 0,5.
\end{array}$

6. Площадь фигуры, ограниченной линией $y = 4x - x^2$ и осью Ох, равна

1) $\frac{1}{3}$

2) $\frac{32}{2}$ 3) $\frac{4}{2}$ 4) 1 5) 0,5.

7. Площадь фигуры, ограниченной линией $\rho = a (+\cos \varphi)$, равна

π

2) a^2 3) πa^2 4) $\frac{3}{2}\pi a^2$ 5) $\frac{2}{3}\pi a^2$.

8. Длина дуги параболы $y=x^2$ от x=0 до x=1 равна

1)0

3) $2 \ln (4 + \sqrt{5})$ 4) $\ln (4 + \sqrt{5})$ 5) $2 - \frac{1}{4} \ln (4 - \sqrt{5})$.

9. Длина дуги кривой $x=2\sin t,\ y=2\cos t,\ t\in \left|\ 0;\frac{\pi}{2}\ \right|$ равна

π

2) $\frac{3}{2}\pi$ 3) π^2 4) $\pi\sqrt{\pi}$ 5) 2π .

10. Длина дуги линии $ho = a(1-\cos\varphi)$ равна

1) $\frac{3}{2}\pi a$ 2) 8a 3) $\frac{5}{2}\pi a$ 4) 4a 5) $4\pi a$.

11. Объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной графиками функций $y = x^2$, y = 0, x = 2, равен

- 1) $\frac{2\pi}{5}$ 2) $\frac{12\pi}{5}$ 3) $\frac{21\pi}{5}$ 4) $\frac{27\pi}{5}$ 5) $\frac{32\pi}{5}$.

12. Объем тела, образованного вращением вокруг оси Оу фигуры, ограниченной графиками функций $y = x^2$, $x = y^2$, равен

- 1) $\frac{\pi}{15}$ 2) $\frac{\pi}{10}$ 3) $\frac{\pi}{5}$ 4) $\frac{3\pi}{10}$ 5) $\frac{4\pi}{15}$.

13. Скорость прямолинейного движения тела выражается формулой $v = 5 - 12t + 6t^2$ (м/с), тогда путь, пройденный телом за 3 секунды от начала движения, будет равен

- 1) 12 m
- 2) 15 m
- 3) 50 м
- 4) 100 m
- 5) 200 м.

14. Какую работу нужно совершить, чтобы растянуть пружину на 10 см, если сила в 20 Н растягивает пружину на 5 см.

- 1) 1 Дж
- 2) 2 Дж
- 3) 3 Дж
- 4) 4 Дж 5) 5 Дж.

15. Решением дифференциального уравнения $y \cdot y' + x = 0$ является

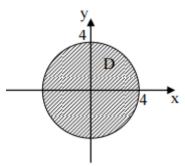
- 1) $x^2 + y^2 = 2C$ 2) $y^2 = x^2 + C$ 3) $y^2 + 2\ln|x| = C$ 4) $y = -\frac{x^2}{2} + C$
- 5) x + y = C.

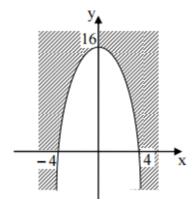
16. Общее решение дифференциального уравнения $y' + ytgx = \sin 2x$ имеет вид

- 1) $y = -2\cos^2 x + C\cos x$ 2) $y = -2\cos^2 x + C\sin x$

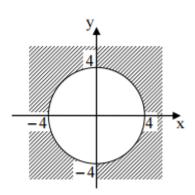
- 3) $y = 3\cos x + C\sin x$ 4) $y = 2tgx + C\cos x$ 5) $y = -2tg^2x + Cctgx$.

17. Общее решение дифференциального уравнения y'' - 2y' + 10y = 0 имеет вид

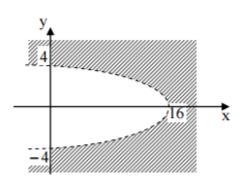

- 1) $y = e^x C_1 \cos x + C_2 \sin x$ 2) $y = e^{-x} C_1 \cos 2x + C_2 \sin 2x$ 3) $y = e^x C_1 \cos 2x + C_2 \sin 2x$ 4) $y = e^{-x} C_1 \cos 3x + C_2 \sin 3x$
- 5) $y = e^x C_1 \cos 3x + C_2 \sin 3x$.

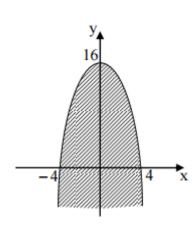

18. Область определения функции $z = \log_4 (2 - 10y - 2x - 19)$ задается

- 1) $(x; y) \in \mathbb{R}$ 2) $(y-1)^2 > 10(x+2)$ 3) $(x-1)^2 \neq 10(y+2)$ 4) $(y-1)^2 \leq 10(x+2)$ 5) $(x-1)^2 > 10(y+2)$.


19. Область определения функции $z = \sqrt{x^2 + y^2 - 16}$ задана на рисунке

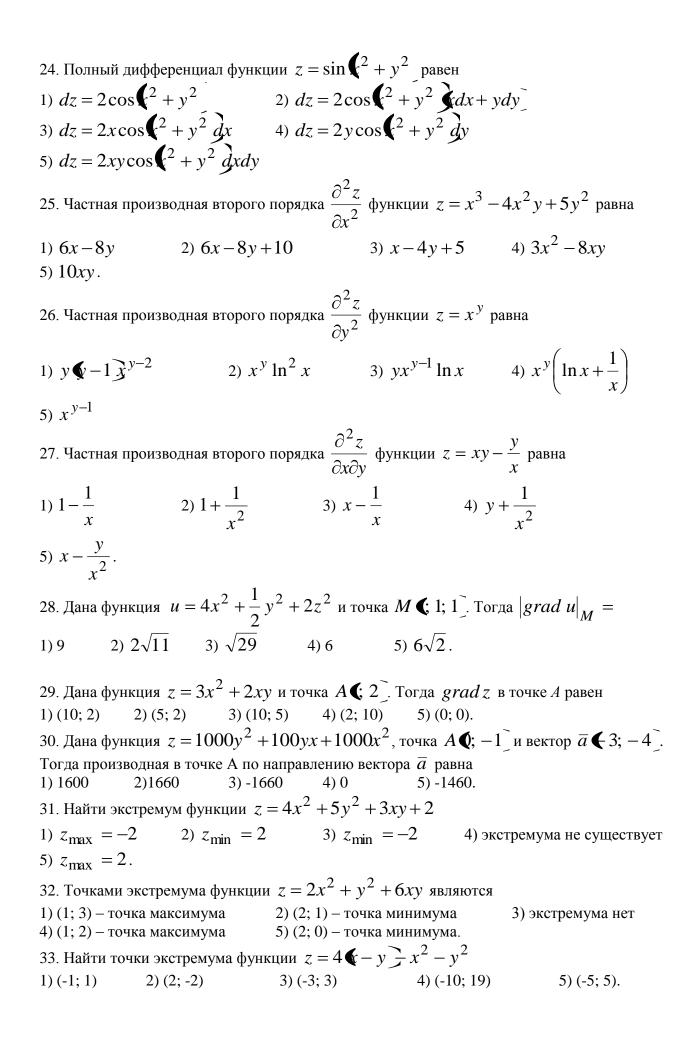
1)





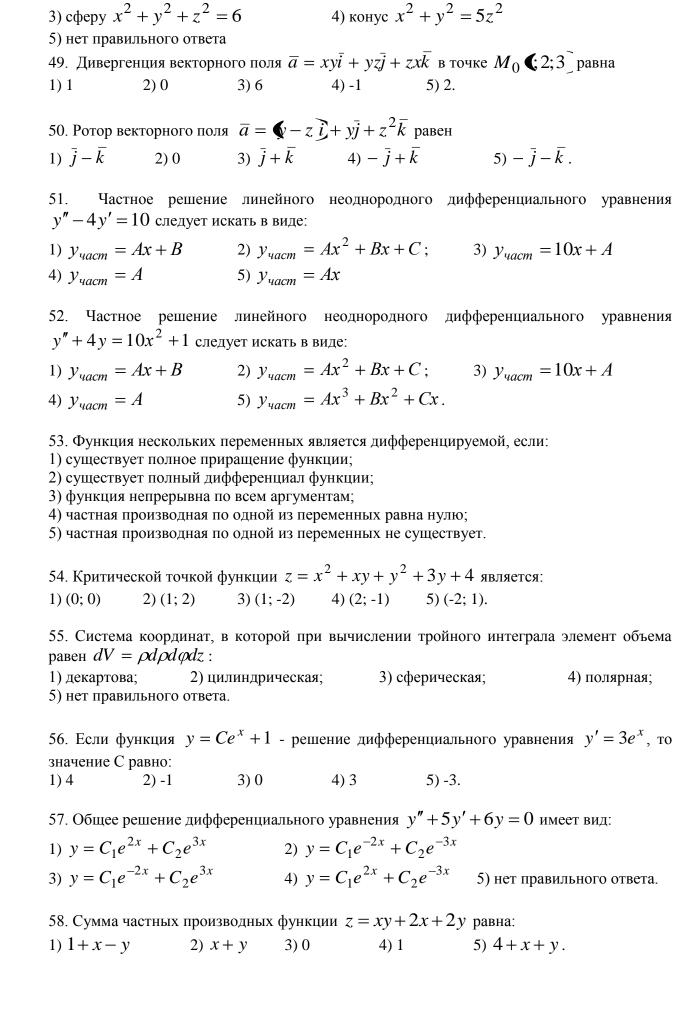
4)

5)



- 20. Исследовать функцию $z = \frac{5x}{1 x y}$ на непрерывность:
- 1) функция непрерывна при любых $\{ (x,y) \in R \}$
- 2) функция непрерывна при любых **(**; y **)** $x + y \ge 1$
- 3) функция непрерывна при любых $\{x,y\} \in R$, кроме точек $\{x,y\} : x+y=1$
- 4) функция непрерывна при любых $(x, y) \in R$, кроме точек оси Ох
- 5) функция непрерывна при любых $\{x; y\} \in R$, кроме точек оси Oy.
- 21. Частная производная $\frac{\partial z}{\partial x}$ функции $z = x^6 + y^5 3xy^2$ равна

- 1) $6x^5 3y^2$ 2) $5y^4 6xy$ 3) $-3y^2$ 4) $6x^5 + 5y^4 3y^2$
- 5) $6x^5 + 5y^4 6xy$
- 22. Частная производная $\frac{\partial z}{\partial v}$ функции $z=x^6+y^5-3xy^2$ равна


- 1) 24y 2) $6x 5y^4 + 6xy$ 3) $5y^4 6xy$ 4) $6x^5 + y^5 3x$
- 5) -9y + 34xy.
- 23. Значение частной производной $\frac{\partial z}{\partial x}$ функции $z = \frac{y}{x^3 y^3}$ в точке **(**; -1) равно

- 1) $\frac{3}{4}$ 2) $\frac{3}{2}$ 3) $\frac{3}{5}$ 4) $\frac{2}{3}$ 5) $\frac{1}{4}$.

34. Наибольшее и наименьшее значения функции $z = x - 2y + 5$ в области, задаваемой
неравенствами $x \ge 0$, $y \ge 0$, $x + y \le 1$, равны
1) z_{Haum} (3) = 3, z_{Hauo} (5) = 6 2) z_{Haum} (1) = 3, z_{Hauo} (2) = 6 3) z_{Haum} (3) = 3, z_{Hauo} (3) = 6 4) z_{Haum} (3) = -3, z_{Hauo} (5) = -6
5) $z_{\text{Haum}} (3,1) = -3$, $z_{\text{Hau}} (0) = 6$.
35. Область интегрирования в интеграле $\int_{1}^{7} dy \int_{y=3}^{4} f $
$\begin{cases} 1 \le y \le 7 \\ 1 \le x \le 7 \end{cases} \qquad \begin{cases} 1 \le x \le 7 \\ 1 \le x \le 7 \end{cases}$
1) $\begin{cases} 1 \le y \le 7 \\ 4 \le x \le y - 3 \end{cases}$ 2) $\begin{cases} 1 \le x \le 7 \\ x + 3 \le y \le 4 \end{cases}$ 3) $\begin{cases} 1 \le x \le 7 \\ 4 \le y \le x + 3 \end{cases}$
4) $\begin{cases} 1 \le y \le 7 \\ y - 3 \le x \le 4 \end{cases}$ 5) нет правильного ответа.
36. Изменить порядок интегрирования в интеграле $\int_{1}^{2} \frac{4}{dx} \int f \mathbf{x}, y dy$
1 3
1) $\int_{3}^{4} dy \int_{3}^{2} f $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 2
4) $\int dy \int f \cdot (x) dx$ 5) нет правильного ответа
37. Изменить порядок интегрирования в интеграле $\int_{1}^{7} dy \int_{y-3}^{4} f \cdot (x, y) dx$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1) $\int dx \int f \langle x, y \rangle dy$ 2) $\int dx \int f \langle x, y \rangle dy$ 3) $\int dx \int f \langle x, y \rangle dy$
1) $\int dx \int f(x, y) dy$ 2) $\int dx \int f(x, y) dy$ 3) $\int dx \int f(x, y) dy$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4) $\int_{0}^{4} dx \int_{0}^{x+3} f(x, y) dy$ 5) нет правильного ответа.
-2 1
38. В двойном интеграле $\iint_D f(x, y) dx dy$ область D, ограниченная линиями
$y = x^2$, $y = 0$, $x + y - 2 = 0$, задается системой неравенств
1) $\begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$ 2) $\begin{cases} 0 \le x \le 2 \\ 0 \le y \le x^2 \end{cases}$ 3) $\begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 2 - y \end{cases}$
4) $\begin{cases} 0 \le x \le 2 \\ x^2 \le y \le 2 - x \end{cases}$ 5) нет правильного ответа.
$\int x^2 \le y \le 2 - x$
39. Значение двойного интеграла $\iint_D (3-2y) dx dy$, где область $D: \begin{cases} 1 \le x \le 2 \\ 2 \le y \le 3 \end{cases}$ равно
ν

1) $\frac{1}{2}$	2) $\frac{5}{4}$	3) $-\frac{5}{4}$	4) 2	5) -	$\cdot \frac{1}{4}$.
3	т —	7			- 4 г, ограниченной линиями
		цает результат			, 1
				5) нет прав	ильного ответа.
		$\int x \ge 0$			
41. Площади	ь области D :	$\begin{cases} x \ge 0 \\ y = x^2 \\ y = 4 - 3x \end{cases}$	равна		
1) 1,5	2) $\frac{7}{6}$	3) $\frac{13}{6}$	4) 4,5	5) $\frac{5}{6}$.	
42. Масса пл	пастинки меж,	ду кривыми)	$y = x^3, y = x$	\sqrt{x} с плотнос	тью γ €, у ј З равна
1) $\frac{5}{4}$	2) $\frac{12}{5}$	3) $\frac{13}{4}$	4) $\frac{2}{3}$	5) $\frac{3}{4}$.	
43. Областью	о интегрирова	ния тройного	интеграла ∫	$dx \int_{0}^{2} dy \int_{0}^{2} f \mathbf{C},$	<i>y</i> , <i>z dz</i> является 4) плоскость
5) отрезок пр	рямой				
44. Значение	трехкратного	$\frac{2}{1}$ о интеграла \int_{-1}^{2} 3) 80	$\int dy \int dx \int_{0}^{4} 4 dx$	- 2 <i>д</i> z равно	
1) 25	2) 64	3) 80	4) 75	5) 36.	
45. Значение	е тройного ин	теграла $\iiint x$	y <i>dxdydz</i> , где	е G — паралл	елепипед, ограниченный
плоскостями	x = 0, x = 1	y = 0, y = 1	1, z = 0, z = 2	2, равно	
1) 1	2) 0.5	3) 0.25	4) 2	5) 1.5.	
46. Криволи	нейный инте	грал 1 рода	$\int_{L} \frac{dL}{x-y}$, где	L – отрезог	к прямой $y = 0.5x - 2$,
$x \in [0, 4]$, p	авен		L		
1) $\sqrt{2} \ln 2$	2) $\sqrt{5}$	5 ln 2	3) ln 2	4) 5ln 4	5) $\sqrt{5} \ln 8$.
47 Криволи	-, ve нейный инте	град 2 рода	$\int_{0}^{\infty} \int_{0}^{\infty} dx$	+ 3xdv гле	$V = 1 + x^2 y < 2$
тт. териволи	пениын ише	трил 2 роди		1 эми у , 1 дс	5) $\sqrt{5} \ln 8$. • $L: y = 1 + x^2, y \le 2$,
равен 1) 0	2) 2	3) -2	4) 6	5) -6.	
			оля $U = x^2$	$+y^2+z^2$, 1	проходящая через точку
P (; 2; 1], π	редставляет с				
1) chepy $3x^2$	$x^2 + y^2 + z^2 =$	= 8	2) chepy x^2	$x^2 + 2y^2 + z^2$	=10

- 59. Наименьшее значение функции $z = 3 2x^2 xy y^2$ в треугольной области, ограниченной линиями x = 1, y = 0, y = x, равно:
- 1) 1
- 2) -1
- 3) 0
- 4) -7
- 60. Результат вычисления интеграла $\int_{1}^{+\infty} x^{-4} dx$ равен:
- 1) ∞

- 2) 0 3) 1 4) $\frac{8}{3}$ 5) $\frac{1}{3}$

Ключ теста (экзамен 2 семестр)

		MJIRO	ч теста (экзамен	2 семест	ינ	
№ вопроса	№ правильного ответа						
1	5	2	1	3	1	4	1
5	5	6	2	7	4	8	3
9	1	10	2	11	5	12	4
13	2	14	2	15	1	16	1
17	5	18	5	19	3	20	3
21	1	22	3	23	1	24	2
25	1	26	2	27	2	28	1
29	1	30	2	31	2	32	3
33	2	34	3	35	4	36	3
37	4	38	3	39	3	40	2
41	3	42	1	43	1	44	3
45	2	46	5	47	4	48	3
49	3	50	5	51	5	52	2
53	2	54	3	55	2	56	4
57	2	58	5	59	2	60	5

Критерии оценки тестовых заданий

Пример оценки тестовых заданий может определяться по формуле:

$$O$$
и. $mecmup = \frac{Число правильных ответов}{Bceго вопросов в тесте} \cdot 4,$

где Ои. тестир, - оценка за тестирование.

Оценка за тест используется как составная общей оценки за курс, как указано в примере п.3.1.